<h2>Answer :</h2>

_____________________________

Answer:
Step-by-step explanation:
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form
or 
In a proportional relationship the constant of proportionality k is equal to the slope m of the line and the line passes through the origin
we have the point (-30,18)
so
x=-30, y=18
Find the value of k
substitute
Simplify
Divide by 6 both numerator and denominator
Answer: 9%
Step-by-step explanation: as all the marks are out of 100 i suppose
so Ali got 58% at eng and 49% at math
so 58-49=9%
and that is how we get the answer
Option A: The sum for the infinite geometric series does not exist
Explanation:
The given series is 
We need to determine the sum for the infinite geometric series.
<u>Common ratio:</u>
The common difference for the given infinite series is given by

Thus, the common difference is 
<u>Sum of the infinite series:</u>
The sum of the infinite series can be determined using the formula,
where 
Since, the value of r is 3 and the value of r does not lie in the limit 
Hence, the sum for the given infinite geometric series does not exist.
Therefore, Option A is the correct answer.