You have to keep order of operations in mind.
1. Take care of the parentheses; distribute.
-3+6x-3=-20-8x
Simplified: 6x-6=-20-8x
2. Isolate the x variable.
Add 8x to both sides and add 6 to both sides.
14x=-14
3. Solve for x.
Divide by 14 on both sides.
x=-1
Step-by-step explanation:
HERE
* 11x
Phrase= x times 11
Operation= times
* 8-y
Phrase= 8 minus y
Operation = minus
1- 7n
2- 4-y
3- 13 + x
4- x divided by 12
5- y times 10
6- c added to 3
Answer:
The area of the parallelogram is:_______________________________________________________
in² = 1174 ⅛ in² = 1174.125 in² .
_______________________________________________________Explanation:_______________________________________________________Area of a parallelogram:
_______________________________________________________ A = base * height = b * h ;
From the figure (from the actual "question"):
_______________________________________ b = 50.5 in.
h = 23.25 in.
____________________________________________________________Method 1) A = b * h =
= (50.5 in) * (23.25 in) = 1174.125 in² ; or, write as: 1174 <span>⅛ .
</span>
____________________________________________________________Method 2) A = b * h =
= (50 ½ in) * (23 <span>¼ in) =
= (</span>

in) * (

<span> in) ;
</span>
___________________________________________________________Note: "50 ½ " = [(50*2) + 1 ] / 2 =

;
Note: "23 ¼ " = [(23*4) + 1 ] / 4 =

;
____________________________________________________________
→ A = (

in) * (

in) ;
→ A =

in² =

in² ;
→ A = (9393/8) in² =
→
A =
in² = 1174 ⅛ in² = 1174.125 in² .
________________________________________________________
Hi there, we use PEMDAS to solve this problem, PEMDAS is parenthesis, Exponents, Multiply, Divide, Add, and Subtract. In this case, we have [6.6÷(-5+3)]*(-1), 6.6/-5+3(-1)=6.6/-2(-1)=(-3.3)(-1)=3.3. So, your answer is 3.3
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em>⤴</em><em>⤴</em><em>⤴</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>