We need to measure 20.0 grams of CaCl₂ to prepare 500 mL of 0.360 M solution.
First, we need to determine the required moles of CaCl₂. We have 500 mL (0.500 L) of a 0.360 M solution (0.360 moles of CaCl₂ per liter of solution).

Then, we will convert 0.180 moles to grams using the molar mass of CaCl₂ (110.98 g/mol).

To prepare the solution, we weigh 20.0 g of CaCl₂ and add it to a beaker with enough distilled water to dissolve it. We stir it, heat it if necessary, and when we have a solution, we transfer it to a 500 mL flask and complete it to the mark with distilled water.
We need to measure 20.0 grams of CaCl₂ to prepare 500 mL of 0.360 M solution.
You can learn more about solutions here: brainly.com/question/2412491
Answer:
-
Explanation:
As the piece of metal skitters across the surface of the water in a beaker and — particularly in the case of potassium — it appears to catch fire, it is not obvious that the explanation for both phenomena lies in the production of hydrogen gas.
Answer:
the quantity of solution to moles for d is significantly lower.
Explanation:
the larger the amount of liquid, the less amount of ions to dissociate hence having a lesser amount of chloride ions.
compared to b which is less liquid and a higher concentration