Explanation:
<h3>Conclusion. A good friendship is very difficult to come across. That is why we should appreciate this divine relationship that is based on understanding and feelings. ... A true friend is one of the most precious possessions that one can have in his life.</h3>
Hope it's helpful for Yuh bro!!
Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
<h3>What is the boiling-point elevation?</h3>
Boiling-point elevation describes the phenomenon that the boiling point of a liquid will be higher when another compound is added, meaning that a solution has a higher boiling point than a pure solvent.
- Step 1: Calculate the molality of the solution.
We will use the definition of molality.
b = mass solute / molar mass solute × kg solvent
b = 30.0 g / (58.44 g/mol) × 3.75 kg = 0.137 m
- Step 2: Calculate the boiling-point elevation.
We will use the following expression.
ΔT = Kb × m × i
ΔT = 0.512 °C/m × 0.137 m × 2 = 0.140 °C
where
- ΔT is the boiling-point elevation
- Kb is the ebullioscopic constant.
- b is the molality.
- i is the Van't Hoff factor (i = 2 for NaCl).
The normal boiling-point for water is 100 °C. The boiling-point of the solution will be:
100 °C + 0.140 °C = 100.14 °C
Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
Learn more about boiling-point elevation here: brainly.com/question/4206205
Answer:
Kc = Kc = 8.0 * 10^9
Kp = 5.5 *10^5
Explanation:
Step 1: Data given
Temperature = 25.0 °C
Number of moles Fe = 1.0 moles
Number of moles O2 = 1.0 * 10^-3 moles
Number of moles Fe2O3 = 2.0 moles
Volume = 2.0 L
Step 2: The balanced equation
4Fe(s) + 3O2(g) ⇌ 2Fe2O3(s)
Step 3: Calculate molarity
Molarity = moles / volume
[Fe] = 1.0 moles / 2.0 L
[Fe] = 0.5 M
[O2] = 0.001 moles / 2.0 L
[O2] = 0.0005 M
[Fe2O3] = 2.0 moles / 2.0 L
[Fe2O3] = 1.0 M
Step 4: Calculate Kc
Kc =1/ [O2]³
Kc = 1/0,.000000000125
Kc = 8.0 * 10^9
Step 5: Calculate Kp
Kp = Kc*(R*T)^Δn
⇒with Kc = 8.0*10^9
⇒with R = 0.08206 L*atm /mol*K
⇒with T = 298 K
⇒with Δn = -3
Kp = 8.10^9 *(0.08206 * 298)^-3
Kp = 5.5 *10^5