Answer:

But if we were using 3.14 the answer would be
50.24
But the real answer is 50.26548246
Answer:
9 hours
Step-by-step explanation:
First we have to calculate how many eggs she can collect in an hour. All we have to do to do this is divide 80 by 2, as if she can collect 80 in 2 hours, in one hour, half of the time, she can collect have of the eggs. This means that she can collect 40 eggs in one hour.
Now all we have to do is divide how many eggs she wants to collect by how many she can collect per hour, which will give how many hours it will take. In this case 360/40=9, so it will take her 9 hours.
Answer:
9 square kilometers
Step-by-step explanation:
Let's round the width to 2.0 kilometers, and round the length to 4.5 kilometers.
We know that area is length times width, so
A = lw
A = 2.0*4.5
<u>A = 9.0 square kilometers</u>
If we do this on the calculator, it's around 9.36 square kilometers, so our estimate was good.
Answer:
p > -0.2222
Step-by-step explanation:
7p + 3(-6p + 2) > 7p + 9 +1
7p + (3*-6p + 3*2) > 7p + 10
7p - 18p + 6 > 7p + 10
-11p - 7p > 10 - 6
-18p > 4
p > 4/-18
p > -0.2222
Answer:
There will be less than 1 gram of the radioactive substance remaining by the elapsing of 118 days
Step-by-step explanation:
The given parameters are;
The half life of the radioactive substance = 45 days
The mass of the substance initially present = 6.2 grams
The expression for evaluating the half life is given as follows;

Where;
N(t) = The amount of the substance left after a given time period = 1 gram
N₀ = The initial amount of the radioactive substance = 6.2 grams
= The half life of the radioactive substance = 45 days
Substituting the values gives;




The time that it takes for the mass of the radioactive substance to remain 1 g ≈ 118.45 days
Therefore, there will be less than 1 gram of the radioactive substance remaining by the elapsing of 118 days.