1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Greeley [361]
3 years ago
15

PLS HELP!! Given the diagram below, find the value of x. The value of x is

Mathematics
1 answer:
Paha777 [63]3 years ago
7 0

Answer:

44°

Step-by-step explanation:

180-30-14=136

180-136

44

You might be interested in
Solve the equation by graphing. If exact roots cannot be found, state the consecutive integers between which the roots are locat
zavuch27 [327]

Answer:

The equation contains exact roots at x = -4 and x = -1.

See attached image for the graph.

Step-by-step explanation:

We start by noticing that the expression on the left of the equal sign is a quadratic with leading term x^2, which means that its graph shows branches going up. Therefore:

1) if its vertex is ON the x axis, there would be one solution (root) to the equation.

2) if its vertex is below the x-axis, it is forced to cross it at two locations, giving then two real solutions (roots) to the equation.

3) if its vertex is above the x-axis, it will not have real solutions (roots) but only non-real ones.

So we proceed to examine the vertex's location, which is also a great way to decide on which set of points to use in order to plot its graph efficiently:

We recall that the x-position of the vertex for a quadratic function of the form f(x)=ax^2+bx+c is given by the expression: x_v=\frac{-b}{2a}

Since in our case a=1 and b=5, we get that the x-position of the vertex is: x_v=\frac{-b}{2a} \\x_v=\frac{-5}{2(1)}\\x_v=-\frac{5}{2}

Now we can find the y-value of the vertex by evaluating this quadratic expression for x = -5/2:

y_v=f(-\frac{5}{2})\\y_v=(-\frac{5}{2} )^2+5(-\frac{5}{2} )+4\\y_v=\frac{25}{4} -\frac{25}{2} +4\\\\y_v=\frac{25}{4} -\frac{50}{4}+\frac{16}{4} \\y_v=-\frac{9}{4}

This is a negative value, which points us to the case in which there must be two real solutions to the equation (two x-axis crossings of the parabola's branches).

We can now continue plotting different parabola's points, by selecting x-values to the right and to the left of the x_v=-\frac{5}{2}. Like for example x = -2 and x = -1 (moving towards the right) , and x = -3 and x = -4 (moving towards the left.

When evaluating the function at these points, we notice that two of them render zero (which indicates they are the actual roots of the equation):

f(-1) = (-1)^2+5(-1)+4= 1-5+4 = 0\\f(-4)=(-4)^2+5(-4)_4=16-20+4=0

The actual graph we can complete with this info is shown in the image attached, where the actual roots (x-axis crossings) are pictured in red.

Then, the two roots are: x = -1 and x = -4.

5 0
3 years ago
Suppose that the population mean for income is $50,000, while the population standard deviation is 25,000. If we select a random
Fudgin [204]

Answer:

Probability that the sample will have a mean that is greater than $52,000 is 0.0057.

Step-by-step explanation:

We are given that the population mean for income is $50,000, while the population standard deviation is 25,000.

We select a random sample of 1,000 people.

<em>Let </em>\bar X<em> = sample mean</em>

The z-score probability distribution for sample mean is given by;

               Z = \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }  ~ N(0,1)

where, \mu = population mean = $50,000

            \sigma = population standard deviation = $25,000

            n = sample of people = 1,000

The Z-score measures how many standard deviations the measure is away from the mean. After finding the Z-score, we look at the z-score table and find the p-value (area) associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X.

So, probability that the sample will have a mean that is greater than $52,000 is given by = P(\bar X > $52,000)

  P(\bar X > $52,000) = P( \frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } } > \frac{52,000-50,000}{\frac{25,000}{\sqrt{1,000} } } ) = P(Z > 2.53) = 1 - P(Z \leq 2.53)

                                                                    = 1 - 0.9943 = 0.0057

<em>Now, in the z table the P(Z </em>\leq<em> x) or P(Z < x) is given. So, the above probability is calculated by looking at the value of x = 2.53 in the z table which has an area of 0.9943.</em>

Therefore, probability that the sample will have a mean that is greater than $52,000 is 0.0057.

5 0
2 years ago
Question 5 of 5
makvit [3.9K]

Answer:what happened to  c and a

Step-by-step explanation:

4 0
2 years ago
Help fast please....
IrinaVladis [17]
The second one is the answer
7 0
2 years ago
Any complex number can be put into the form a+bi, where a and b are real numbers. (True and False).
Delvig [45]
The answer for that is definitely true. You're welcome ;).
6 0
2 years ago
Read 2 more answers
Other questions:
  • A 60litres solution of alcohol and water contains 20liters of alcohol .how much alcohol must be added to produce a solution of 5
    11·1 answer
  • Write a rule for each pattern. Then use your rule to find the next two terms in the pattern. The numbers are: 1, 3, 6, 10, 15, 2
    9·2 answers
  • -4=b/2 <br> a)-8<br> b)-2<br> c)2<br> D)8
    15·1 answer
  • A kitchen sink faucet streams 0.5 gallons of water in 10 seconds. A bathroom sink faucet streams 0.75 gallons of water in 18 sec
    14·1 answer
  • Pls help 0.4x3.2 step by step pls
    8·1 answer
  • Factor the following expression completely:
    9·2 answers
  • Perform the indicated operation.
    7·2 answers
  • 1 5/6 x 2 1/4 = <br> ANSWER ASAPPP . BE RIGHT AND EXPLAIN PLS
    5·2 answers
  • A triangle has an area of 20 in2. If the height
    11·2 answers
  • Determine whether the series converges or diverges <br> Please, check the image
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!