The probability of winning a lottery by selecting the correct six integers, are
![\begin{aligned}&(a) 1.68 \times 10^{-6} \\&(b) 5.13 \times 10^{-7} \\& (c) 1.91 \times 10^{-7} \\&(d)8.15 \times 10^{-8}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%26%28a%29%201.68%20%5Ctimes%2010%5E%7B-6%7D%20%5C%5C%26%28b%29%205.13%20%5Ctimes%2010%5E%7B-7%7D%20%5C%5C%26%20%28c%29%201.91%20%5Ctimes%2010%5E%7B-7%7D%20%5C%5C%26%28d%298.15%20%5Ctimes%2010%5E%7B-8%7D%5Cend%7Baligned%7D)
<h3>What is binomial distribution?</h3>
The binomial distribution is a type of probability distribution that expresses the probability that, given a certain set of characteristics or assumptions, a value would take one of two distinct values.
Part (a); positive integers not exceeding 30.
To calculate the probability, use binomial coefficients. Pick six of the six accurate integers and none of the other twenty-four.
![\frac{\left(\begin{array}{c}6 \\6\end{array}\right)\left(\begin{array}{c}24 \\0\end{array}\right)}{\left(\begin{array}{c}30 \\6\end{array}\right)}=\frac{1}{\left(\begin{array}{c}30 \\6\end{array}\right)}=1.68 \times 10^{-6}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D6%20%5C%5C6%5Cend%7Barray%7D%5Cright%29%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D24%20%5C%5C0%5Cend%7Barray%7D%5Cright%29%7D%7B%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D30%20%5C%5C6%5Cend%7Barray%7D%5Cright%29%7D%3D%5Cfrac%7B1%7D%7B%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D30%20%5C%5C6%5Cend%7Barray%7D%5Cright%29%7D%3D1.68%20%5Ctimes%2010%5E%7B-6%7D)
Part (b); positive integers not exceeding 36.
To calculate the probability, use binomial coefficients. Pick six of the six accurate integers and none of the other thirty.
![\frac{\left(\begin{array}{l}6 \\6\end{array}\right)\left(\begin{array}{c}30 \\0\end{array}\right)}{\left(\begin{array}{c}36 \\6\end{array}\right)}=\frac{1}{\left(\begin{array}{c}36 \\6\end{array}\right)}=5.13 \times 10^{-7}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cleft%28%5Cbegin%7Barray%7D%7Bl%7D6%20%5C%5C6%5Cend%7Barray%7D%5Cright%29%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D30%20%5C%5C0%5Cend%7Barray%7D%5Cright%29%7D%7B%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D36%20%5C%5C6%5Cend%7Barray%7D%5Cright%29%7D%3D%5Cfrac%7B1%7D%7B%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D36%20%5C%5C6%5Cend%7Barray%7D%5Cright%29%7D%3D5.13%20%5Ctimes%2010%5E%7B-7%7D)
Part (c); positive integers not exceeding 42.
To calculate the probability, use binomial coefficients. Pick six of the six accurate integers and none of the 36 other integers.
![\frac{\left(\begin{array}{l}6 \\6\end{array}\right)\left(\begin{array}{c}36 \\0\end{array}\right)}{\left(\begin{array}{c}42 \\6\end{array}\right)}=\frac{1}{\left(\begin{array}{c}42 \\6\end{array}\right)}=1.91 \times 10^{-7}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cleft%28%5Cbegin%7Barray%7D%7Bl%7D6%20%5C%5C6%5Cend%7Barray%7D%5Cright%29%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D36%20%5C%5C0%5Cend%7Barray%7D%5Cright%29%7D%7B%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D42%20%5C%5C6%5Cend%7Barray%7D%5Cright%29%7D%3D%5Cfrac%7B1%7D%7B%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D42%20%5C%5C6%5Cend%7Barray%7D%5Cright%29%7D%3D1.91%20%5Ctimes%2010%5E%7B-7%7D)
Part (d); positive integers not exceeding 48.
To calculate the probability, use binomial coefficients. Choose six of the six accurate integers and none of the other 42.
![\frac{\left(\begin{array}{l}6 \\6\end{array}\right)\left(\begin{array}{c}42 \\0\end{array}\right)}{\left(\begin{array}{c}48 \\6\end{array}\right)}=\frac{1}{\left(\begin{array}{c}48 \\6\end{array}\right)}=8.15 \times 10^{-8}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cleft%28%5Cbegin%7Barray%7D%7Bl%7D6%20%5C%5C6%5Cend%7Barray%7D%5Cright%29%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D42%20%5C%5C0%5Cend%7Barray%7D%5Cright%29%7D%7B%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D48%20%5C%5C6%5Cend%7Barray%7D%5Cright%29%7D%3D%5Cfrac%7B1%7D%7B%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D48%20%5C%5C6%5Cend%7Barray%7D%5Cright%29%7D%3D8.15%20%5Ctimes%2010%5E%7B-8%7D)
To know more about binomial probability, here
brainly.com/question/9325204
#SPJ4
The complete question is-
Find the probability of winning a lottery by selecting the correct six integers, where the order in which these integers are selected does not matter, from the positive integers not exceeding a) 30. b) 36. c) 42. d) 48.