1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leno4ka [110]
3 years ago
11

Match the given slope (m) and y-intercept (b) with the equation of the line in slope-intercept form.

Mathematics
1 answer:
Allisa [31]3 years ago
7 0

Answer:

y=2x+7

y=4x+7

y=5x

Step-by-step explanation:

substitute the numbers for the variables in the form y=mx+b

You might be interested in
1. What is the value of x? Show your work to justify your answer.
Reil [10]

Answer:

x=72 and the exterior angle is 154

Step-by-step explanation:

We will call the unknown angle in the triangle y.  Angle y and the angle (2x +10) form a straight line so they make 180 degrees.

y + 2x+10 =180

Solve for y by subtracting 2x+10 from each side.

y + 2x+10 - (2x+10) =180 - (2x+10)

y = 180-2x-10

y = 170-2x


The three angles of a triangle add to 180 degrees

x+ y+ 82 = 180

x+ (170-2x)+82 = 180

Combine like terms

-x +252=180

Subtract 252 from each side

-x+252-252 = 180-252

-x = -72

Multiply each side by -1

-1*-x = -72*-1

x=72

The exterior angle is 2x+10.  Substitute x=72 into the equation.

2(72)+10

144+10

154


8 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
Given f(x) = x+2 and g(x) = x-4 solve for (fg)(x)
kirza4 [7]

Answer:  f(g(x)) = x - 2

<u>Step-by-step explanation:</u>

f(x) = x + 2            

g(x) = x - 4

f(g(x)) = f(x - 4) = (x - 4) + 2        <em>replaced x with x - 4</em>

                       = x - 2                 <em>simplified</em>

6 0
3 years ago
Rai compares two cable plans from different companies. Which equation gives the correct value of m, the number of months for whi
tekilochka [14]

Answer:

D. 75m = 50(12)+125(m-12)

Step-by-step explanation:

m = months.

Equation for which Plans A and B cost the same.

In Plan A:

No initial fees.

$75 per month

1 month = $ 75

then;

for m month =$75 m

Total cost for plan A =  75m

In Plan B:

$50 per month for first 12 month.

1 month = $50

12 months = 50(12)

Similarly,

$125 per month for each additional month after that.

additional month= (m-12)

Plan B additional month

= 125(m-12)

Total cost for plan B = 50(12)+ 125(m-12)

Since, Plans A and B cost the same.

75m = 50(12)+125(m-12)

3 0
3 years ago
What is the circumference of a circular disc with a diameter of 10 centimeters? (Round your answer to the nearest tenth.)
Evgen [1.6K]
To determine what the circumference is simply take the value of the diameter and multiply it to the value of Pi or 3.141....

C = Pi • d
C = (3.14)(10 cm)
C = 31.41 cm or 31.4 cm, rounded to the nearest tenth.
5 0
3 years ago
Other questions:
  • What is the solution in point-slope form of the line that passes through the point (3,-2) and has slope of 2/3
    5·1 answer
  • In the triangle determine m
    7·1 answer
  • Help asap What is the equation of this line in slope-intercept form?
    10·2 answers
  • A businessman bought a dealership that is incurring a loss of $500,000 a year. He decided to strategize in order to turn the bus
    10·1 answer
  • Use the data to find the five-number summary. Select all that are true. Number of Points Scored at 10 Basketball Games 64 38 50
    10·1 answer
  • 57 1/2 as a decimal, Please help and Thanks
    5·1 answer
  • If 29% of the students wore jeans what percent of he students did not wear jeans?
    5·1 answer
  • Please help it is due in 10 minutes​
    13·2 answers
  • Test scores are normally distributed with a mean of 100 and a standard deviation of 15. An individual score is found to
    14·1 answer
  • Which explains why the graph is not a function?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!