X= 7/93 or roughly 0.07526...
No solution because you can’t even out both sides
Answer:
This means that the correct initial value problem for the population p(t) as a function of time is is 
Step-by-step explanation:
The population of a town increases at a rate proportional to its population:
This means that this situation is modeled by the following differential equation:

In which k is the growth rate.
By separation of variables, the solution is given by:

In which P(0) is the initial population.
Initial population of 1000.
This means that the correct initial value problem for the population p(t) as a function of time is is 
Answer:
It is likewise significant on the grounds that it causes you decide if your business has enough cash to run or to grow it in future. Thus budget and cash flow spreadsheet is an absolute necessity in a simulation to grow.
Step-by-step explanation:
Cash flow spreadsheet alludes to the announcement of planned cash inflows and outflows. Budget cash flow spreadsheet is utilized to assess the momentary cash necessity and it can likewise be utilized to distinguish where the most extreme cash is going out and from where is the greatest inflow.
To solve this problem, let us first assign some variables.
Let us say that:
v1 = velocity of airplane = 180 mph
t1 = time travelled by airplane
v2 = velocity of jet = 330 mph
t2 = time travelled by jet
Since we know that distance is the product of velocity and
time, and that the distance travelled by the two must be equal for the jet to
catch up to the plane, hence:
v1 * t1 = v2 * t2
But we know that:
t1 = t2 + 1
Therefore:
180 (t2 + 1) = 330 t2
180 t2 + 180 = 330 t2
150 t2 = 180
t2 = 1.2 hours
<span>Therefore the jet can catch up to the plane after 1.2
hours it takes off.</span>