Answer:
-3x is the answer
Step-by-step explanation:
Tnemos el sisema de ecuaciones:

Podemos resolverlo por eliminación sumando ambas ecuaciones y eliminando y. Asi podemos resolver para x:

Ahora podemos resolver para y con cualquiera de las dos ecuaciones:

Respuesta: x=-3, y=0
I think it's 150! Hope this helps :)
Answer:
using PEMDAS
Step-by-step explanation:
P parenthesis
E exponents
M multiplication
D division
A addition
S subtraction
Answer:
B.
Step-by-step explanation:
Since the variable <em>b</em> is manipulated in f(x) = a(bx - h)² + k, we are dealing with horizontal compression and stretching. Since b < 1, that means the graph is being horizontally compressed.