1. The answer is C. cos180=-1, sin180=0. 2*(cos180+i*sin180)=2*(-1+0)=-2. Check every other answer, none of which gets -2.
2. The answer is C. cos270=0, sin270=-1. (You can draw out these angles to see). 2*(cos270+i*sin270)=2*(0-i)=-2i, as desired. Other choices don't work.
3. Answer A. Modulus of z is \sqrt(6^2+(-6)^2)=6*\sqrt(2). <span>The </span>angle<span> of the </span>point<span> on the complex </span>plane<span> is the </span>inverse tangent<span> of the complex portion over the real portion. Theta=arctan(-6/6), and arctan(-1)=-pi/4, so theta=-pi/4=-pi/4+2pi=7pi/4. So A is the correct answer.
4. The answer is A. As above, cos270=0, sin270=-1. 3(cos270+sin270*i)=3*(0-i)=-3i. This problem is similar to question 2.
5. </span>z1 = 7(cos 40° + i sin 40°), and z2 = 6(cos 145° + i sin 145°). z1*z2=7*6*(cos 40° + i sin 40°)*(cos 145° + i sin 145°)=42*(cos40*cos145-sin40*sin145+i*sin40*cos145+i*sin145*cos40). Use formula for sum/difference formula of cosines, cos40*cos145-sin40*sin145=cos(40+145)=cos185. Again, sin40*cos145+sin145*cos40=sin(40+145)=sin185. The answer is <span>42(cos 185° + i sin 185°).</span>
Length of circular track is:
L = 2*r*pi
He run 3/4 of it so length is:
L' = 3*2/4*r*pi = 3/2*r*pi
To calculate speed of his movement we use formula:
v = s/t where s = L' and t = 1 minute 45 seconds = 105 seconds
v = L'/t =

v = r* pi/70
If we take that r = 1 answer is
To solve this multiply through by the LCM of 4 and 6, which is 12:-
12 * x/4 - 12 * x/6 = 1*12
3x - 2x = 12
x = 12 answer
Answer:
n = -14
Step-by-step explanation:
n/2 = -7
Multiply by 2 on both sides to isolate n
n = -7 x 2
n = -14
Answer:
Decimal : 2.4
Fraction: 2 4/10 or 2 2/5
Step-by-step explanation:
hope this helps :) plz mark brainliest to help my rank