The table tells us that the x coordinate. It also tells us that y is always x + 1.
For #1 you plot the coordinate (0, 1).
0 (the x coordinate) is given to us already.
1 (the y coordinate) is needed to be found by the equation.
You would then need to fill in the equation given with the x coorident.
y = 0 + 1
Then, solve for y.
0 + 1 = 1
The y coordinate is 1
Go to the horizontal line (x) and find 0.
Then go to the veridical line (y) and find 1.
Then match up the the x and y to plot the coordinate.
You would continue with this equation with the rest of the xs.
This is a hard concept to explain in just words, so feel free to comment with any more questions. :D
Answer:
$5.71
Step-by-step explanation:
20-5.88=14.12
14.12-8.41=5.71

Here, we want to find the diagonal of the given solid
To do this, we need the appropriate triangle
Firstly, we need the diagonal of the base
To get this, we use Pythagoras' theorem for the base
The other measures are 6 mm and 8 mm
According ro Pythagoras' ; the square of the hypotenuse equals the sum of the squares of the two other sides
Let us have the diagonal as l
Mathematically;
![\begin{gathered} l^2=6^2+8^2 \\ l^2\text{ = 36 + 64} \\ l^2\text{ =100} \\ l\text{ = }\sqrt[]{100} \\ l\text{ = 10 mm} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20l%5E2%3D6%5E2%2B8%5E2%20%5C%5C%20l%5E2%5Ctext%7B%20%3D%2036%20%2B%2064%7D%20%5C%5C%20l%5E2%5Ctext%7B%20%3D100%7D%20%5C%5C%20l%5Ctext%7B%20%3D%20%7D%5Csqrt%5B%5D%7B100%7D%20%5C%5C%20l%5Ctext%7B%20%3D%2010%20mm%7D%20%5Cend%7Bgathered%7D)
Now, to get the diagonal, we use the triangle with height 5 mm and the base being the hypotenuse we calculated above
Thus, we calculate this using the Pytthagoras' theorem as follows;
Answer:
x > − 7
Step-by-step explanation:
hope this helps