firstly let's convert the mixed fraction to improper fraction, then hmmm let's see we have two denominators, 5 and 3, and their LCD will simply be 15, so we'll multiply both sides by that LCD to do away with the denominators, let's proceed,
![\bf \stackrel{mixed}{2\frac{1}{3}}\implies \cfrac{2\cdot 3+1}{3}\implies \stackrel{improper}{\cfrac{7}{3}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{z}{5}-4=\cfrac{7}{3}\implies \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{15}}{15\left( \cfrac{z}{5}-4 \right)=15\left( \cfrac{7}{3} \right)}\implies 3z-60=35 \\\\\\ 3z=95\implies z=\cfrac{95}{3}\implies z = 31\frac{2}{3}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B1%7D%7B3%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%203%2B1%7D%7B3%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B7%7D%7B3%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7Bz%7D%7B5%7D-4%3D%5Ccfrac%7B7%7D%7B3%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B15%7D%7D%7B15%5Cleft%28%20%5Ccfrac%7Bz%7D%7B5%7D-4%20%5Cright%29%3D15%5Cleft%28%20%5Ccfrac%7B7%7D%7B3%7D%20%5Cright%29%7D%5Cimplies%203z-60%3D35%20%5C%5C%5C%5C%5C%5C%203z%3D95%5Cimplies%20z%3D%5Ccfrac%7B95%7D%7B3%7D%5Cimplies%20z%20%3D%2031%5Cfrac%7B2%7D%7B3%7D)
What kind of Question is that. That is some real math right there.
The solution to the inequality 6m + 2 > -27 is m > -4.33
The solution to the inequality 8(p-6)>4(p-4) is p > 8
The given inequality is:
6m + 2 > - 27
Subtract 2 to both sides of the inequality
6m + 2 - 2 > -27 - 2
6m > -29
Divide both sides by 6

For the inequality 8(p-6)>4(p-4)
Expand the inequality using the distributive rule
8p - 48 > 4p - 16
Collect like terms
8p - 4p > -16 + 48
4p > 32
Divide both sides of the inequality 4

The solution to the inequality 6m + 2 > -27 is m > -4.33
The solution to the inequality 8(p-6)>4(p-4) is p > 8
Learn more here: brainly.com/question/15816805
Answer:
its pretty simple actually put a point after the -1 (-0.9) and move left twice from -1 to get the plot point -1.2