I need help with MY MATH jejehee
If they're similar it would be 72, 36x2=72.
Answer:
And we can find this probability on this way:
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problm
Let X the random variable that represent the scores on an exam of a population, and for this case we know the distribution for X is given by:
Where
and
We are interested on this probability
And the best way to solve this problem is using the normal standard distribution and the z score given by:
If we apply this formula to our probability we got this:
And we can find this probability on this way:
Answer:
The correct answer is 3. -88
Step-by-step explanation:
24 / 3 + 24 x -4
24 x -4 = -96
24 / 3 = 8
8 + -96 = -88
Answer:
Confidence Interval for the mean
Step-by-step explanation:
Confidence interval is made using the observations of a <em>sample</em> of data obtained from a population, so it is constructed in such a way, that, with a certain <em>level of confidence </em>(this is the statement mentioned in the question), that is, one could have a percentage of probability that the interval, or range around the value obtained, frequently 95%, contains the true value of a population parameter (in this case, the population mean).
It is one way to extract information from a population using a sample of it. This kind of information is what inference statistic is always looking for.
An <u>approximation</u> about how to construct this interval or range:
- Select a random sample.
- For the specific case of a <em>mean</em>, you need to calculate the mean of the <em>sample </em>(sample mean), and, if standard deviation is unknown or not mentioned, also calculate the sample standard deviation.
- With this information, and acknowledged that these values follows a standard normal distribution (a normal distribution with mean 0 and a standard deviation of 1), represented by random variable Z, one can use all this information to calculate a <em>confidence interval for the mean</em>, with a certain confidence previously choosen (for example, 95%), that the population mean must be in this interval or <em>range around this sample mean.</em>