Answer:
In a geometric sequence, the <u>ratio</u> between consecutive terms is constant.
Step-by-step explanation:
A geometric sequence is where you get from one term to another by multiplying by the same value. This value is known as the <u>constant ratio</u>, or <u>common ratio</u>. An example of a geometric sequence and it's constant ratio would be the sequence 4, 16, 64, 256, . . ., in which you find the next term by multiplying the previous term by four. 4 × 4 = 16, 16 × 4 = 64, and so on. So, in this sequence the constant <em>ratio </em>would be four.
Z= F+ (g/n) (you’re welcome)
Answer: The square root of π has attracted attention for almost as long as π itself. When you’re an ancient Greek mathematician studying circles and squares and playing with straightedges and compasses, it’s natural to try to find a circle and a square that have the same area. If you start with the circle and try to find the square, that’s called squaring the circle. If your circle has radius r=1, then its area is πr2 = π, so a square with side-length s has the same area as your circle if s2 = π, that is, if s = sqrt(π). It’s well-known that squaring the circle is impossible in the sense that, if you use the classic Greek tools in the classic Greek manner, you can’t construct a square whose side-length is sqrt(π) (even though you can approximate it as closely as you like); see David Richeson’s new book listed in the References for lots more details about this. But what’s less well-known is that there are (at least!) two other places in mathematics where the square root of π crops up: an infinite product that on its surface makes no sense, and a calculus problem that you can use a surface to solve.
Step-by-step explanation: this is the same paragraph The square root of π has attracted attention for almost as long as π itself. When you’re an ancient Greek mathematician studying circles and squares and playing with straightedges and compasses, it’s natural to try to find a circle and a square that have the same area. If you start with the circle and try to find the square, that’s called squaring the circle. If your circle has radius r=1, then its area is πr2 = π, so a square with side-length s has the same area as your circle if s2 = π, that is, if s = sqrt(π). It’s well-known that squaring the circle is impossible in the sense that, if you use the classic Greek tools in the classic Greek manner, you can’t construct a square whose side-length is sqrt(π) (even though you can approximate it as closely as you like); see David Richeson’s new book listed in the References for lots more details about this. But what’s less well-known is that there are (at least!) two other places in mathematics where the square root of π crops up: an infinite product that on its surface makes no sense, and a calculus problem that you can use a surface to solve.
Answer:
Answer:
x =11
Step-by-step explanation:
6x +1 + 5x -17 + 9x - 24 = 180
x =11
p= 7x
a= -12x
t=-15x
PLEASE MARK AS BRAINLIEST!!! :)
Answer:
2.8 i think
Step-by-step explanation: