<h3>Answer: Choice C</h3>
RootIndex 12 StartRoot 8 EndRoot Superscript x
12th root of 8^x = (12th root of 8)^x
![\sqrt[12]{8^{x}} = \left(\sqrt[12]{8}\right)^{x}](https://tex.z-dn.net/?f=%5Csqrt%5B12%5D%7B8%5E%7Bx%7D%7D%20%3D%20%5Cleft%28%5Csqrt%5B12%5D%7B8%7D%5Cright%29%5E%7Bx%7D)
=========================================
Explanation:
The general rule is
![\sqrt[n]{x} = x^{1/n}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%7D%20%3D%20x%5E%7B1%2Fn%7D)
so any nth root is the same as having a fractional exponent 1/n.
Using that rule we can say the cube root of 8 is equivalent to 8^(1/3)
![\sqrt[3]{8} = 8^{1/3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B8%7D%20%3D%208%5E%7B1%2F3%7D)
-----
Raising this to the power of (1/4)x will have us multiply the exponents of 1/3 and (1/4)x like so
(1/3)*(1/4)x = (1/12)x
In other words,


-----
From here, we rewrite the fractional exponent 1/12 as a 12th root. which leads us to this
![8^{(1/12)x} = \sqrt[12]{8^{x}}](https://tex.z-dn.net/?f=8%5E%7B%281%2F12%29x%7D%20%3D%20%5Csqrt%5B12%5D%7B8%5E%7Bx%7D%7D%20)
![8^{(1/12)x} = \left(\sqrt[12]{8}\right)^{x}](https://tex.z-dn.net/?f=8%5E%7B%281%2F12%29x%7D%20%3D%20%5Cleft%28%5Csqrt%5B12%5D%7B8%7D%5Cright%29%5E%7Bx%7D%20)
Answer:
A
Step-by-step explanation:
Answer:
The only non-zero fixed point is: x = 9/A.
The Step-by-step explanation:
A fixed point of a function is a points that is mapped to itself by the function; g(x) = x. Therefore, in order to find the fixed point of the given function we need to solve the following equation:
g(x) = x
x(10 - Ax) = x
10x - Ax² = x
10x - x -Ax² = 0
9x - Ax² = 0
Ax² - 9x = 0
The solutions of this second order equation are:
x = 0 and x = 9/A.
Since we are only asked for the non-zero fixed points, the solution is: 9/A.
Answer:
Step-by-step explanation:
Statements Reasons
1). Points A, B and C form the triangle 1). Given
2). Let DE be a line passing through 2). Definition of parallel lines
B and parallel to AC
3). ∠3 ≅ ∠5 and ∠1 ≅ ∠4 3). Theorem of Alternate
interior angles
4). m∠1 = m∠4 and m∠3 = m∠5 4). Definition of alternate angles
5). m∠4 + m∠2+ m∠5 = 180° 5). Angle addition and definition
of straight lines
6). m∠1 + m∠2+ m∠3 = 180° 6). Substitution