Answer:
Step-by-step explanation:


<u><em>Answer: </em></u>
#9: 5
#10: -2
#11: -1.5
<em><u>Step-by-step explanation:</u></em>
<em><u>#9:</u></em> 3,8,13,18,23,(28),(33),(38),.. <em>Go up by 5 each time, so the common difference is </em><u><em>5</em></u><em>.</em>
<u><em>#10:</em></u> 11,9,7,5,3,(1),(-1),(-3),... <em>Go down </em><em>(-)</em><em> by 2 each time, so the common difference is </em><u><em>-2</em></u><em>.</em>
<u><em>#11:</em></u> 3, 1.5, 0, -1.5, -3, (-4.5), (-6), (-7.5),... <em>Go down </em><em>(-) </em><em>by 1.5 each time, so the common difference is </em><u><em>-1.5</em></u><em>.</em>
Answer:
D. g(x) = (x+ 4)² + 6
Step-by-step explanation:
Here, the given function is f(x) = x²
Now,if a graph x² is translated by (h,k) where:
h = Translation done towards RIGHT
k = Translation done towards UP
Then the translated equation is given as:
y = (x-h)² + k .... (1)
Now here, the graph is translated 6 UNITS UP and 4 UNITS LEFT.
⇒ h = - 4 and k = 6
Substituting the value of h, k in (1) , we get:
g(x) = (x-(-4))² + 6 = (x+ 4)² + 6
⇒ g(x) = (x+ 4)² + 6
Hence, the equation of the translated function, g(x) is g(x) = (x+ 4)² + 6.
The general equation of second degree is
Ax²+By²+Gx+Fy+C=0 ------1
Now the given conditions are
A=1, B=0, C=0
Now,
putting in eq. 1
x²+Gx+Fy=0
x²+Gx= -Fy
For completing square, add both side (G/2)²
x²+Gx+(G/2)²=-Fy+(G/2)²
(x+G/2)²=-F(y-G²/4F)
Or
X²=-FY where X=x+G/2, Y=y-G²/4F
which is the standard eq. of parabola in XY-coordinate.