1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis23 [38]
3 years ago
8

Can anyone help me please, I need to figure out the value of n with work shown

Mathematics
1 answer:
Dmitry [639]3 years ago
4 0

Answer:

n = 15

Step-by-step explanation:

This is a right triangle, and so the Pythagorean Theorem applies:

x^2 + 8^2 = 17^2

Solving for x^2:  17^2 - 8^2 = 289 - 64 = 225, and so x = 15.

n = 15

You might be interested in
PLEASE HELP! ! ! urgent!
sertanlavr [38]

Answer:

6(\frac{1}{3} \times\frac{7}{5} )=(6\times\frac{1}{3} )\frac{7}{5}

Answer: B

<u>-------------------------</u>

Hope it helps...

Have a great day!!

8 0
3 years ago
Which equation is a related equation
ki77a [65]
D , because 28-9=21 and 21=x
4 0
3 years ago
Help me lawd!!!!!!!jkdmfkfm
Klio2033 [76]
This is equivalent to:

(2.2533/2.59)(10^8/10^4)

(0.87)(10^4) which is:

0.87X10^4  which is equal to:  

0.87X10000 which is equal to:

8.7X1000  and since 1000=10^3 we can say:

8.7X10^3
6 0
3 years ago
Drag the tiles to the boxes to form correct pairs.<br> Match the pairs of equivalent expressions.
Rashid [163]

Answer:

The following pairs/results are matched:

  • 5\left(2t+1\right)+\left(-7t+28\right) = 3t+33
  • 3\left(3t-4\right)-\left(2t+10\right) = 7t-22
  • \left(4t-\frac{8}{5}\right)-\left(3-\frac{4}{3}t\right) = \frac{16t}{3}-\frac{23}{5}
  • \left(-\frac{9}{2}t+3\right)+\left(\frac{7}{4}t+33\right) = -\frac{11}{4}t+36

Step-by-step explanation:

Lets solve all the expressions to match the results.

  • 5\left(2t+1\right)+\left(-7t+28\right)

<em>Solving the expression</em>

5\left(2t+1\right)+\left(-7t+28\right)

\mathrm{Remove\:parentheses}:\quad \left(-a\right)=-a

5\left(2t+1\right)-7t+28

10t+5-7t+28

3t+33

Therefore, 5\left(2t+1\right)+\left(-7t+28\right) = 3t+33

  • 3\left(3t-4\right)-\left(2t+10\right)

<em>Solving the expression</em>

3\left(3t-4\right)-\left(2t+10\right)

9t-12-\left(2t+10\right)

9t-12-2t-10

7t-22

Therefore, 3\left(3t-4\right)-\left(2t+10\right) = 7t-22

  • \left(4t-\frac{8}{5}\right)-\left(3-\frac{4}{3}t\right)

<em>Solving the expression</em>

\left(4t-\frac{8}{5}\right)-\left(3-\frac{4}{3}t\right)

\mathrm{Remove\:parentheses}:\quad \left(a\right)=a

4t-\frac{8}{5}-\left(3-\frac{4}{3}t\right)

4t-\frac{8}{5}-\left(-\frac{4t}{3}+3\right)

4t-\frac{8}{5}-3+\frac{4t}{3}

As

-3-\frac{8}{5}:\quad -\frac{23}{5}    and  \frac{4t}{3}+4t:\quad \frac{16t}{3}

So,

4t-\frac{8}{5}-3+\frac{4t}{3} will become \frac{16t}{3}-\frac{23}{5}

Therefore, \left(4t-\frac{8}{5}\right)-\left(3-\frac{4}{3}t\right) = \frac{16t}{3}-\frac{23}{5}

  • \left(-\frac{9}{2}t+3\right)+\left(\frac{7}{4}t+33\right)

<em>Solving the expression</em>

\left(-\frac{9}{2}t+3\right)+\left(\frac{7}{4}t+33\right)

\mathrm{Remove\:parentheses}:\quad \left(a\right)=a

-\frac{9}{2}t+3+\frac{7}{4}t+33

\mathrm{Group\:like\:terms}

\frac{9}{2}t+\frac{7}{4}t+3+33

\mathrm{Add\:similar\:elements:}\:-\frac{9}{2}t+\frac{7}{4}t=-\frac{11}{4}t

-\frac{11}{4}t+3+33

-\frac{11}{4}t+36

Therefore, \left(-\frac{9}{2}t+3\right)+\left(\frac{7}{4}t+33\right) = -\frac{11}{4}t+36

Thus, the following pairs/results are matched:

  • 5\left(2t+1\right)+\left(-7t+28\right) = 3t+33
  • 3\left(3t-4\right)-\left(2t+10\right) = 7t-22
  • \left(4t-\frac{8}{5}\right)-\left(3-\frac{4}{3}t\right) = \frac{16t}{3}-\frac{23}{5}
  • \left(-\frac{9}{2}t+3\right)+\left(\frac{7}{4}t+33\right) = -\frac{11}{4}t+36

Keywords: algebraic expression

Learn more about algebraic expression from brainly.com/question/11336599

#learnwithBrainly

5 0
3 years ago
Read 2 more answers
WARNING : NON SENSE ANSWER REPORT TO MODERATOR ​
Rzqust [24]

Answer:

\frac{180}{147}

Step-by-step explanation:

  • Simplify (\frac{3}{-7} - \frac{11}{21} )

=> \frac{(-3 \times 3) - 11}{21}

=> \frac{-9 - 11}{21}

=> \frac{-20}{21}

  • Find the additive inverse of  \frac{-20}{21} by using its property - <em>"Sum of a number & its additive inverse is always zero". </em>Assume that 'x' is an additive inverse of  \frac{-20}{21}.

=> x + \frac{-20}{21} = 0

=> x = 0 - (-\frac{20}{21}) = \frac{20}{21}

  • Simplify (\frac{9}{5} \div \frac{7}{5} )

=> \frac{9}{5} \times \frac{1}{\frac{7}{5} }

=> \frac{9}{5} \times \frac{5}{7}

=> \frac{9}{7}

  • Now, find the product of \frac{9}{7} & \frac{20}{21}

=> \frac{9}{7} \times \frac{20}{21}

=> \frac{180}{147}

3 0
3 years ago
Other questions:
  • Pleaseee!!!! Can somebody please answer my question
    10·1 answer
  • Given: FKLM is a trapezoid, KL = 26 FM = 49, FK = 10, m∠F = 48º Find: Area of FKLM
    11·1 answer
  • Plz help don't get it
    14·1 answer
  • What is the variable for -7.8 = 4.4 + 2r
    15·1 answer
  • Phoebe built the sandbox below for her younger sister.
    8·2 answers
  • Evaluate the following expression given that z=8 2z-4
    11·1 answer
  • A game and a controller are on sale for 45% off. The regular price of the game is $80. The regular price of the controller is $1
    6·1 answer
  • The height of a fish tank is 1.1 feet, and the area of the tank's base is
    15·1 answer
  • In ASTU, SU is extended through point U to point V, m_STU = (2x + 8),
    10·1 answer
  • 3
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!