Percent (%) Composition of CuO
Cu = 1 x 50g - Multiply by one as there is one Cu
O = 1 x 12.5g - Multiply by one as there is one O
CuO = 62.5g
% for Cu = 50g over 62.5 multiplied by 100 = 80%
% for O = 12.5g over 62.5 multiplied by 100 = 20%
Final Answer :
<em>Percent (%) Composition of CuO = </em>80% (Cu) & 20% (O)
Answer:
All description is given in explanation.
Explanation:
Van der Waals forces:
It is the general term used to describe the attraction or repulsion between the molecules. Vander waals force consist of two types of forces:
1. London dispersion forces
2. Dipole-dipole forces
1. London dispersion forces:
These are the weakest intermolecular forces. These are the temporary because when the electrons of atoms come close together they create temporary dipole, one end of an atom where the electronic density is high is create negative pole while the other becomes positive . These forces are also called induce dipole- induce dipole interaction.
2. Dipole-dipole forces:
These are attractive forces , present between the molecules that are permanently polar. They are present between the positive end of one polar molecules and the negative end of the other polar molecule.
Hydrogen bonding:
It is the electrostatic attraction present between the atoms which are chemically bonded. The one atom is hydrogen while the other electronegative atoms are oxygen, nitrogen or flourine. This is weaker than covalent and ionic bond.
Ionic bond or electrostatic attraction:
It is the electrostatic attraction present between the oppositely charged ions. This is formed when an atom loses its electron and create positive charge and other atom accept its electron and create negative charge.
Hydrophobic interaction:
It is the interaction between the water and hydrophobic material. The hydrophobic materials are long chain carbon containing compound. These or insoluble in water.
Covalent bond:
These compounds are formed by the sharing of electrons between the atoms of same elements are between the different element's atoms. The covalent bond is less stronger than ionic bond so require less energy to break as compared to the energy require to break the ionic bond.
Here's the equation:
<span>Fe2 O3 + 2Al → 2Fe + Al2 O3
</span>
Here's the question.
What mass of Al will react with 150g of Fe2 O3?
<span>In every 2 moles Al you need 1 mole Fe2O3 </span>
<span>moles = mass / molar mass </span>
<span>moles Fe2O3 = 150 g / 159.69 g/mol </span>
<span>= 0.9393 moles </span>
<span>moles Al needed = 2 x moles Fe2O3 </span>
<span>= 2 x 0.9393 mol </span>
<span>= 1.879 moles Al needed </span>
<span>mass = molar mass x moles </span>
<span>mass Al = 26.98 g/mol x 1.879 mol </span>
<span>= 50.69 g </span>
<span>= 51 g (2 sig figs)
</span>
So the <span>mass of Al that will react with 150g of Fe2 O3 is 51 grams.</span>