Answer:
Angle θ = 30.82°
Explanation:
From Malus’s law, since the intensity of a wave is proportional to its amplitude squared, the intensity I of the transmitted wave is related to the incident wave by; I = I_o cos²θ
where;
I_o is the intensity of the polarized wave before passing through the filter.
In this question,
I is 0.708 W/m²
While I_o is 0.960 W/m²
Thus, plugging in these values into the equation, we have;
0.708 W/m² = 0.960 W/m² •cos²θ
Thus, cos²θ = 0.708 W/m²/0.960 W/m²
cos²θ = 0.7375
Cos θ = √0.7375
Cos θ = 0.8588
θ = Cos^(-1)0.8588
θ = 30.82°
To find the time zone in hours of a particular location, you can take the longitude -- in degrees -- and divide it by 15. So, for example, 75° E would be 75/15 which equals 5. That translates to the time zone being 5 hours ahead of UTC or GMT time, which can also be labeled as UTC+5. i hope this helped if not then sorry
Answer:
c. 307 nm
Explanation:
angular position of first dark fringe = λ / d , λ is wavelength and d is width of slit .
(40 x π ) / 180 = 410 / d
angular position of second dark fringe = 2 x λ / d , λ is wavelength and d is width of slit .
(60 x π ) / 180 = 2 x λ / d
Dividing these equations
60 / 40 = 2 x λ / 410
λ = 307.5 nm.
Answer:
a. Ssystem > 40 J/K
Explanation:
Given that
The entropy of first block = 10 J/K
The entropy of second block = 30 J/K
When two bodies come into contact with each other, the entropy of the combined system will increase and the entropy sum remains unchanged: According to the Second law of thermodynamics.The entropy of the system will be greater than 40 J/K.
Therefore the answer is a.
Ssystem > 40 J/K
Answer:
Car radiators: Water is used as coolant car radiators. Due to its high specific heat capacity, it can absorb a large amount of heat energy from the engine of the car, but its temperature does not rise too high.
Explanation:
i hope this answer your question if it s wrong please let know