Answer:
The fraction of its energy that it radiates every second is
.
Explanation:
Suppose Electromagnetic radiation is emitted by accelerating charges. The rate at which energy is emitted from an accelerating charge that has charge q and acceleration a is given by

Given that,
Kinetic energy = 6.2 MeV
Radius = 0.500 m
We need to calculate the acceleration
Using formula of acceleration

Put the value into the formula

Put the value into the formula


We need to calculate the rate at which it emits energy because of its acceleration is

Put the value into the formula


The energy in ev/s


We need to calculate the fraction of its energy that it radiates every second


Hence, The fraction of its energy that it radiates every second is
.
Answer:
Cuanto más fuerte es el ácido, más rápido se disocia para generar H +start superscript, plus, end superscript. Por ejemplo, el ácido clorhídrico (HCl) se disocia completamente en iones hidrógeno y cloruro cuando se mezcla con agua, por lo que se considera un ácido fuerte.
Answer: a=-2.4525 m/s^2
d=s=190.3 m
Explanation:The only force that is stopping the car and causing deceleration is the frictional force Fr
Fr = 25% of weight
W=mg
W=1750*9.81
W=17167.5
Hence

Frictional force is negative as it acts in opposite direction
According to newton second law of motion
F=ma
hence


given
u= 110 km/h
u=110*1000/3600
u=30.55 m/s
to get t we know that final velocity v=0

Answer:
Speed, v = 312.34 m/s
Explanation:
The equation that describes a transverse wave on the string is given by :
..............(1)
Where
y = displacement of a string particle
x = position of the particle on the string
The wave is travelling in the +x direction. We have to find the speed of the wave.
The general equation of traverse wave is given by :
................(2)
On comparing equation (1) and (2) we get,
k = 3 rad/m
Since, 
..............(3)
Also, 
Since, 
...............(4)
Speed of the wave is the product of frequency and wavelength i.e.

Using equation (3) and (4), the speed of the wave can be calculated as :

v = 312.34 m/s
Hence, the speed of the transverse wave is 312.34 m/s
Answer:
8. acceleration =
= 1 unit .
9. acceleration =
= -1 unit.
10. acceleration =
= 0 units.
Explanation:
8. i) acceleration = velocity / time
ii) In this figure velocity = time
iii) therefore acceleration =
= 1 unit .
9. i) acceleration = velocity / time
ii) In this figure 4 = m + 5, therefore m = -1
therefore velocity = (-0.5
time) + 5
iii) therefore acceleration =
= -1 units.
10.) velocity is constant at 2
therefore acceleration =
= 0 units