Answer:
Step-by-step explanation:
Since we know -7x=y we use the substitution method and plug it in the top equation.
or x=-2/3
Then plug it back in the the bottom equation
y=14/3
0<x<1 and 0<y<1
x>0 so x is positive and y>0 so y is also positive.
When you multiply two positive numbers you always get a positive number, so the product of x and y must be positive, or greater than 0.
xy>0 - it must be true
xy<0 - it can't be true
Also when you divide a positive number by a positive number you always get a positive number, so the quotient of x and y must be positive.
x/y<0 - it can't be true
D and E can be true, but don't have to. It depends on the values of x and y. If x>y, then x-y>0 is true and x-y<0 isn't true; if x<y, then x-y>0 isn't true and x-y<0 is true.
Therefore, only A <u>must</u> be true.
Radius, r = 3
The equation of a sphere entered at the origin in cartesian coordinates is
x^2 + y^2 + z^2 = r^2
That in spherical coordinates is:
x = rcos(theta)*sin(phi)
y= r sin(theta)*sin(phi)
z = rcos(phi)
where you can make u = r cos(phi) to obtain the parametrical equations
x = √[r^2 - u^2] cos(theta)
y = √[r^2 - u^2] sin (theta)
z = u
where theta goes from 0 to 2π and u goes from -r to r.
In our case r = 3, so the parametrical equations are:
Answer:
x = √[9 - u^2] cos(theta)
y = √[9 - u^2] sin (theta)
z = u