Answer: 50a+2
Step-by-step explanation:
1. Simplify 5a5a\5a5a to 1.
1+5×10a+10
2.Simplify 5×10a to 50a.
1+50a+10
3.Cancel 10.
1+50a+1
4. Collect like terms.
50a+(1+1)
5. Simplify.
50a+2
The maximum height of the projectile is the maximum point that can be gotten from the projectile equation
The projectile reaches the maximum height after 5 seconds
The function is given as:

Differentiate the function with respect to t

Set to 0

So, we have:

Collect like terms


Solve for t


Hence, the projectile reaches the maximum after 5 seconds
Read more about maximum values at:
brainly.com/question/6636648
Answer:
88 deg
Step-by-step explanation:
Opposite angles of an inscribed quadrilateral are supplementary. That means that the sum of the measures of angles O and Q is 180 deg.
2x + 2x + 4 = 180
4x + 4 = 180
4x = 176
x = 44
m<O = 2x = 2(44) = 88
Answer: 88 deg
Answer:
7
Step-by-step explanation:
8(7)=56
<span>The maxima of a differential equation can be obtained by
getting the 1st derivate dx/dy and equating it to 0.</span>
<span>Given the equation h = - 2 t^2 + 12 t , taking the 1st derivative
result in:</span>
dh = - 4 t dt + 12 dt
<span>dh / dt = 0 = - 4 t + 12 calculating
for t:</span>
t = -12 / - 4
t = 3
s
Therefore the maximum height obtained is calculated by
plugging in the value of t in the given equation.
h = -2 (3)^2 + 12 (3)
h =
18 m
This problem can also be solved graphically by plotting t
(x-axis) against h (y-axis). Then assigning values to t and calculate for h and
plot it in the graph to see the point in which the peak is obtained. Therefore
the answer to this is:
<span>The ball reaches a maximum height of 18
meters. The maximum of h(t) can be found both graphically or algebraically, and
lies at (3,18). The x-coordinate, 3, is the time in seconds it takes the ball
to reach maximum height, and the y-coordinate, 18, is the max height in meters.</span>