3a + 3b, for a=2 and b=4 ... The first thing you'd do would be to plug the numbers in -
3 x 2 + 3 x 4
Then multiply them -
6 + 12
Then add -
18.
So your answer should be 18.
Area of a triangle
A=h x b/2=12 x 5/2=30
please mark me as brainly
Just did a specific one of these; let's do the general case.
The point nearest the origin is (a,b).
The line from the origin through the point is

The line we seek is perpendicular to this one. We swap the coefficients on x and y, negating one, to get the perpendicular family of lines. We set the constant by plugging in the point (a,b):


That's standard form; let's plug in the numbers:


__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)____φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)v__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)
Answer:
4, see below :)
Step-by-step explanation:
We can rewrite the equation into:
3.5 + 2 - 1.5
First we add 3.5 and 2
3 and 2 are in the ones place so:
5, and then you added the .5
5.5
Then:
5.5 - 1.5
First we subtract the tenths place so:
.5 - .5 = 0
Then the ones:
5 - 1 = 4