1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aniked [119]
3 years ago
12

Let f(x)=2x^4+x^3+x^2-3x+r. For what value of r is f(2)=0?

Mathematics
2 answers:
mariarad [96]3 years ago
6 0

Answer:

r = -38

Step-by-step explanation:

For what value of r in the formula:  f(x)  =  2x4 + x3 + x2- 3x + r  does  f(2)  =  0?

Replace x with 2:  2·24 + 23 + 22- 3·2 + r  =  32 + 8 + 4 - 6 + r  =  38 + r

This value is to equal 0:   38 + r  =  0

                                                r  =  -38

JulijaS [17]3 years ago
3 0

Answer:

the answer is 0

Step-by-step explanation:

You might be interested in
Ramos went to a pizza shop and spent half of his money on lunch. If Ramos had $4.50 left after lunch,how much money did he have
ankoles [38]
Because Ramos spent half of his money, he now has the other half of his money, which is $4.50. Therefore, he originally had:
$4.50* 2= $9.00

The final answer is $9.00~
8 0
3 years ago
Read 2 more answers
HELLPPPP PLEASE QUICKK ASAP
asambeis [7]

Answer:

9

Step-by-step explanation:

The reason why it is 9 is because if you look to the bigger triangle, you can see that 15 is 3/4 the size of 20, so once you find what number is 3/4 of 12, you have the answer, 9! Hope this helps!

6 0
3 years ago
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
If we used the points (1,8) and (2,16), what is the slope?
Naddik [55]

Answer:  8

Step-by-step explanation:  

See the image

7 0
3 years ago
Pleaseee help
Semenov [28]

Answer:

1. 2/4 = 1/2

2. 9/24= 3/8

3. 56/64= 7/8

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Andrew earned $125.00 last year on his investment of $10,000.00
    13·2 answers
  • In a city of 80,000 people there are 30,000 people under 25 years of age. What percent of the population is under 25 years of ag
    12·2 answers
  • Which of the following is a polynomial with roots: − square root of 5 , square root of 5 , and 3? (6 points)
    8·1 answer
  • Courtney walked from her house to the beach at a constant speed of 4 kilometers per hour, and then walked
    10·2 answers
  • The city garden orders 1,680 tulip bulbs for riverside park .The blubs were shipped in 35. Boxes with an equal number of bulbs i
    6·1 answer
  • A man claims to have extrasensory perception. As a test, a fair coin is flipped 10 times and the man is asked to predict the out
    13·1 answer
  • The price of a new car was 12,500 it is reduced to 11,625 work out the percentage reduction
    12·1 answer
  • Acellus
    6·2 answers
  • SOMEONE PLEASE HELP ME PLEASE
    8·2 answers
  • The width of a rectangle is 12 cm less than the length. the perimeter is 120 cm. Find the length and the width of the rectangle
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!