(1) The integral is straightforward; <em>x</em> ranges between two constants, and <em>y</em> ranges between two functions of <em>x</em> that don't intersect.

(2) First find where the two curves intersect:
<em>y</em> ² - 4 = -3<em>y</em>
<em>y</em> ² + 3<em>y</em> - 4 = 0
(<em>y</em> + 4) (<em>y</em> - 1) = 0
<em>y</em> = -4, <em>y</em> = 1 → <em>x</em> = 12, <em>x</em> = -3
That is, they intersect at the points (-3, 1) and (12, -4). Since <em>x</em> ranges between two explicit functions of <em>y</em>, you can capture the area with one integral if you integrate with respect to <em>x</em> first:

(3) No special tricks here, <em>x</em> is again bounded between two constants and <em>y</em> between two explicit functions of <em>x</em>.

Answer:
too soon :(
Explanation:
“Fun isn’t something one considers when balancing the universe. But this...heh heh heh...does put a smile on my face.” - Thanos
They stressed the direction of all human activity toward the goal of increasing the power of the ruler and the state.
Answer: the total is 4.0 yardage
Explanation: add 5.5 and 2.0 THEN subtract your total with the 3.5 and then you get the answer B)