Answer:

Step-by-step explanation:
From the Venn diagram, n(AUB)=31
The given probabilities in the option are calculated below:

The only correct option is the probability of B which is 
<h3>
Answer:</h3>
- C. (9x -1)(x +4) = 9x² +35x -4
- B. 480
- A. P(t) = 4(1.019)^t
Step-by-step explanation:
1. See the attachment for the filled-in diagram. Adding the contents of the figure gives the sum at the bottom, matching selection C.
2. If we let "d" represent the length of the second volyage, then the total length of the two voyages is ...
... (d+43) + d = 1003
... 2d = 960 . . . . . . . subtract 43
... d = 480 . . . . . . . . divide by 2
The second voyage lasted 480 days.
3. 1.9% - 1.9/100 = 0.019. Adding this fraction to the original means the original is multiplied by 1 +0.019 = 1.019. Doing this multiplication each year for t years means the multiplier is (1.019)^t.
Since the starting value (in 1975) is 4 (billion), the population t years after that is ...
... P(t) = 4(1.019)^t
10 is a good number because is what adds to 100 and the number 100 is lucky. This is what i think.
Answer:
43.35 years
Step-by-step explanation:
From the above question, we are to find Time t for compound interest
The formula is given as :
t = ln(A/P) / n[ln(1 + r/n)]
A = $2500
P = Principal = $200
R = 6%
n = Compounding frequency = 1
First, convert R as a percent to r as a decimal
r = R/100
r = 6/100
r = 0.06 per year,
Then, solve the equation for t
t = ln(A/P) / n[ln(1 + r/n)]
t = ln(2,500.00/200.00) / ( 1 × [ln(1 + 0.06/1)] )
t = ln(2,500.00/200.00) / ( 1 × [ln(1 + 0.06)] )
t = 43.346 years
Approximately = 43.35 years