Answer:
X = 2146.05 m
Explanation:
We need to understand first what is the value we need to calculate here. In this case, we want to know how far from the starting point the package should be released. This is the distance.
We also know that the plane is flying a certain height with an specific speed. And the distance we need to calculate is the distance in X with the following expression:
X = Vt (1)
However we do not know the time that this distance is covered. This time can be determined because we know the height of the plain. This time is referred to the time of flight. And the time of flight can be calculated with the following expression:
t = √2h/g (2)
Where g is gravity acceleration which is 9.8 m/s². Replacing the data into the expression we have:
t = √(2*2500)/9.8
t = 22.59 s
Now replacing into (1) we have:
X = 95 * 22.59
<h2>
X = 2146.05 m</h2>
This is the distance where the package should be released.
Hope this helps
Answer:
he does no work on the wall coz wall didn't move
the wall doesn't move so the energy that he use will be wasted
the force that he put on the wall is also zero since the wall didn't move
Answer: 0.999959 c
Explanation:
According to the special relativity theory, time is measured differently by two observers moving one relative another, according to the Lorentz Transform Equation, as follows:
t = t’ / t=t^'/√(1-(v)2/c2 )
where t= time for the moving observer (relative to the spacecraft, fixed on Earth) = 110 years.
t’= time for the observer at rest respect from spacecraft = 1 year
v= spacecraft constant speed
c= speed of light
Solving for v, with a six decimals precision as a multiple of c, we get:
v = 0.999959 c
Answer:
E.)none of the above
Explanation:
Elastic energy = kinetic energy
½ kx² = ½ mv²
v = x √(k / m)
v = 0.2 m √(20 N/m / 2 kg)
v = 0.632 m/s
Time to travel 2.0 m:
t = (2.0 m) / (0.632 m/s)
t = 3.16 s