Answer:
K = 25351. 69 N / m
Explanation:
Given : Fk = 515 N , v = 1.8 m /s , d = 5.0 m , β = 22.0 ° , m = 150 kg
Using the work done by all forces at initial and the end can determine the constant of the spring
Ws + We - Fk = Em - Ef
- ¹/₂ * K * x² + m*g*h - F*d = 0 - ¹/₂ * m * v²
Also the round motion part
K* x = F + We
K * x = F + m*g*h
Replacing numeric to equal the equations and find the constant
¹/₂ * K * x² = 150*9.8* 5* sin (22°) - 5150* 5 + ¹/₂*150*(1.8m/s)²
K * x² = 421.358
Now use the other equation
K * x = 515 + 150*9.8* sin(22°)
K * x = 3268.35
Both equation give x' as a
x = 0.1289 m now using in any equation can find K
K = 25351. 69 N / m
Answer:
The coil radius of other generator is 5.15 cm
Explanation:
Consider the equation for induced emf in a generator coil:
EMF = NBAω Sin(ωt)
where,
N = No. of turns in coil
B = magnetic field
A = Cross-sectional area of coil = π r²
ω = angular velocity
t = time
It is given that for both the coils magnetic field, no. of turn and frequency is same. Since, the frequency is same, therefore, the angular velocity, will also be same. As, ω = 2πft.
Therefore, EMF for both coils or generators will be:
EMF₁ = NBπr₁²ω Sin(ωt)
EMF₂ = NBπr₂²ω Sin(ωt)
dividing both the equations:
EMF₁/EMF₂ = (r₁/r₂)²
r₂ = r₁ √(EMF₂/EMF₁)
where,
EMF₁ = 1.8 V
EMF₂ = 3.9 V
r₁ = 3.5 cm
r₂ = ?
Therefore,
r₂ = (3.5 cm)√(3.9 V/1.8 V)
<u>r₂ = 5.15 cm</u>
Answer: Can I get a picture???
Answer:
mercury and alcohol
ii) used to test temperatures
Answer:
7.1 Hz
Explanation:
In a generator, the maximum induced emf is given by

where
N is the number of turns in the coil
A is the area of the coil
B is the magnetic field strength
f is the frequency
In this problem, we have
N = 200


B = 0.030 T
So we can re-arrange the equation to find the frequency of the generator:
