For all the dogs: you have 2.65+2.46+3.67+2.91 = 11.69%
Now, the probability of getting a chihuahua would be 3.44/11.69=0.2942= 24.92
Step-by-step explanation:
there ya go!
Step-by-step explanation:
Move expression to the left side and change its sign
5
y
−
3
+
10
y
2
−
y
−
6
−
y
y
+
2
=
0
Write
−
y
as a sum or difference
5
y
−
3
+
10
y
2
+
2
y
−
3
y
−
6
−
y
y
+
2
=
0
Factor out
y
and
−
3
from the expression
5
y
−
3
+
10
y
(
y
+
2
)
−
3
(
y
+
2
)
−
y
y
+
2
=
0
Factor out
y
+
2
from the expression
5
y
−
3
+
10
(
y
+
2
)
(
y
−
3
)
−
y
y
+
2
=
0
Write all numerators above the least common denominator
5
(
y
+
2
)
+
10
−
y
(
y
−
3
)
(
y
+
2
)
(
y
−
3
)
=
0
Distribute
5
and
−
y
through the parenthesis
5
y
+
10
+
10
−
y
2
+
3
y
(
y
+
2
)
(
y
−
3
)
=
0
Collect the like terms
8
y
+
20
−
y
2
(
y
+
2
)
(
y
−
3
)
=
0
Use the commutative property to reorder the terms
−
y
2
+
8
y
+
20
(
y
+
2
)
(
y
−
3
)
=
0
Write
8
y
as a sum or difference
−
y
2
+
10
y
−
2
y
+
20
(
y
+
2
)
(
y
−
3
)
=
0
Factor out
−
y
and
−
2
from the expression
−
y
(
y
−
10
)
−
2
(
y
−
10
)
(
y
+
2
)
(
y
−
3
)
=
0
Factor out
−
(
y
−
10
)
from the expression
−
(
y
−
10
)
(
y
+
2
)
(
y
+
2
)
(
y
−
3
)
=
0
Reduce the fraction with
y
+
2
−
y
−
10
y
−
3
=
0
Determine the sign of the fraction
−
y
−
10
y
−
3
=
0
Simplify
10
−
y
y
−
3
=
0
When the quotient of expressions equals
0
, the numerator has to be
0
10
−
y
=
0
Move the constant,
10
, to the right side and change its sign
−
y
=
−
10
Change the signs on both sides of the equation
y
=
10
Check if the solution is in the defined range
y
=
10
,
y
≠
3
,
y
≠
−
2
∴
y
=
10
1/10
As 1km is 1000 meters, so 100/1000 = 1/10
The total angle sum of a triangle is 180°
As such, 180= 78 + 2s +4s
102= 6s
s=17
Answer: -1
Step-by-step explanation:
Here is the complete question:
Brittany rents bicycles to tourists. She recorded the height (in cm) of each customer and the frame size (in cm) of the bicycle that customer rented. After plotting her results, Brittany noticed that the relationship between the two variables was fairly linear, so she used the data to calculate the following least squares regression equation for predicting bicycle frame size from the height of the customer: y'=1/3x + 1/3.
What is the residual of a customer with a height of 155 cm who rents a bike with a 51 cm frame?
The regression equation is given as:
y'=(1/3)x + (1/3)
Since the height is given as 155cm, x=155 cm
The predicted frame size,
y'=(1/3)x + (1/3)
y'=(1/3) × 155+ (1/3)
= 51 2/3 + 1/3
= 52
The observed frame size,
y=51
Residual = Observed y- predicted y
=51-52
= -1
The residual of a customer with a height of 155 cm who rents a bike with a 51 cm frame is -1.