The exponential model has an initial value of 3
The exponential model of the data is f(x) = 3 * (1.2)^x
<h3>How to determine the exponential model?</h3>
From the complete question,we have the following parameters:
- Initial value, a = 3
- Growth rate, r = 0.2
The exponential model is then calculated as:
f(x) = a * (1 + r)^x
Substitute known values
f(x) = 3 * (1 + 0.2)^x
Evaluate the sum
f(x) = 3 * (1.2)^x
Hence, the exponential model of the data is f(x) = 3 * (1.2)^x
Read more about exponential models at:
brainly.com/question/7296382
Given :-
- a² - 2a - b² = 0
- 2b + 2ab = 0
To find :-
Solution :-
<u>Taking</u><u> </u><u>second</u><u> </u><u>equation</u><u>:</u><u>-</u>
- 2b + 2ab = 0
- 2b ( 1 + a ) = 0
- 2b = 0 or (1+a) = 0
- b = 0 , a = -1
<u>Substitute</u><u> </u><u>in </u><u>first </u><u>equation</u><u> </u><u>:</u><u>-</u><u> </u>
<u>When </u><u>b </u><u>=</u><u> </u><u>0</u><u> </u><u>,</u>
- a² - 2a - 0² = 0
- a² - a = 0
- a( a -1) =0
- a = 0 , 1
<u>When </u><u>a </u><u>=</u><u> </u><u>-</u><u>1</u><u> </u><u>,</u>
- (-1)² - 2*(-1) - b² = 0
- 1 + 2 - b² = 0
- b² = 3
- b = ±√3
<u>Answer </u><u>:</u><u>-</u><u> </u>
- a = 0,1 ; b = 0
- a = -1 , b = ±√3