The answer here is neutrons
When non metallic oxide for example SO2 dissolved in water it produces sulphurous acid. SO2 + H2O → H2SO3 When metallic oxide reacts with water it produces Metal hydroxides. Na2O + H2O → 2NaOH
Answer:i hope im not too late
Explanation:
4CO2 also known as 4CO2 is a chemical compound occurring as an acidic colorless gas with a density about 53% higher than that of dry air. Carbon dioxide molecules consist of a carbon atom covalently double bonded to two oxygen atoms. It occurs naturally in Earth's atmosphere as a trace gas. It also helps trap earths heat inside the earth so i doesnt escape back to outer space.
yourwelcome goodluck ill peel my eyes out if need help again- an 8th grader :p
Hi!
The correct options would be:
1. Cathode - <em>reduction</em>
The cathode is the negatively charged electrode, and so has an excess of electrons. Cations (positively charged ions) are attracted to the cathode, and gain electrons to acquire a neutral charge. The process in which a gain of electron occurs is called reduction.
2. Anode - <em>oxidation</em>
The opposite occurs at the anode which is positively charged and attracts negatively charged ions, anions. These anions lose their electrons at the anode to acquire a neutral charge, and the process involving loss of electrons is known as oxidation.
3. Salt Bridge - <em>ion transport </em>
Salt bridge is a physical connection between the the anodic and cathodic half cells in an electrochemical cell and is a pathway that facilitates the flow of ions back and forth these half cells. Salt bridge is involved in maintaining a neutral condition in the electrochemical cells, and its absence would result in the accumulation of positive charge in the anodic cell, and negative charge in the cathodic cell.
4. Wire - <em>electron transport </em>
Wires have a universal role of being a pathway for the transport of electrons in circuit. This role is also the same in the wires involved in an electrochemical cells where they are used to transport electrons from the anodic half cell, and this electron transport results in the generation of electricity in the internal circuit of the electrochemical cell.
Hope this helps!
<span>This example represents the challenge of survival of the fittest. In this situation, the trees have a distinct advantage due to their above average height. This puts them in the best position to gain the resources that they need to survive, most notably, the sun. The smaller plants, however, do not have this advantage, and lose out to the trees.</span>