Set of equations that can be used to calculate rate for each plumber:
2A+8B+8C = 1,400 --- (1)
4A+7B+10C = 1,660 --- (2)
3A+9B+9C = 1,660 --- (3)
------------------------------------
2*(1) - (2)
------------------------------------
4A+16B+16C = 2,800
4A+7B+10C = 1,660 -
------------------------------------
9B+6C = 1,140 --- (4)
------------------------------------
3(2) -4(3)
-----------------------------------
12A+21B+30C = 4,980
12A+36B+36C = 6,600 -
-----------------------------------
-15B-6C = -1,620 --- (5)
------------------------------------
(4) + (5)
------------------------------------
9B+6C = 1140
-15B-6C = -1620 +
-------------------------------------
-6B = -480 => 6B = 480 => B = 480/6 = 80
-------------------------------------------------------
Using (4), 9(80)+6C = 1140
720+6C = 1140 => 6C = 1140-720 = 420 => C = 420/6 = 70
------------------------------------------------------------------------------
Using (1), 2A+8(80)+8(70) = 1400
2A+640+560 =1400 => 2A = 1400-640-560 = 200 => A = 200/2 = 100
----------------------------------------------------------------------------------------------
The rates are:
A = $100
B = $80
C = $70
--------------------------------
On Thursday, number of calls: A = 4 hrs, B = 6 hrs, C = 3 hrs
Money earned = 4*100+6*80+3*70 = $1,090
Your question: Find 40% of 200
======================================================================
SOLVING...
Multiply 40% (or 0.40) by 200 to find your answer
40% x 200 = 80
0.40 x 200 = 80
80 is your answer
For some value of z, the value of the cumulative standardized normal distribution is 0.8340. the value of z is
Answer: We are required to find the value of z corresponding to probability 0.8340.
i.e., 
We can find the value of z using the standard normal table.
Using the standard normal table, we have:

Therefore, for the value of z = 0.97, cumulative standardized normal distribution is 0.8340
Attached here standard normal table for your reference.
Answer:
im stuck on the same question XD
Step-by-step explanation:
Answer: first one is 15.01
Step-by-step explanation: