A garph y=2 represents a line parallel to the x axis with the y coordinate equal to 2.
The point which lies on the y=2 graph has its y coordinate equal to 2.
In the given options, (3,2) is the coordinate with the y coordinate equal to 2.
Hence, (3,2) lies on the graph of y = 2.
Option (D) is the answer.
The question might have some mistake since there are 2 multiplier of t. I found a similar question as follows:
The population P(t) of a culture of bacteria is given by P(t) = –1710t^2+ 92,000t + 10,000, where t is the time in hours since the culture was started. Determine the time at which the population is at a maximum. Round to the nearest hour.
Answer:
27 hours
Step-by-step explanation:
Equation of population P(t) = –1710t^2+ 92,000t + 10,000
Find the derivative of the function to find the critical value
dP/dt = -2(1710)t + 92000
= -3420t + 92000
Find the critical value by equating dP/dt = 0
-3420t + 92000 = 0
92000 = 3420t
t = 92000/3420 = 26.90
Check if it really have max value through 2nd derivative
d(dP)/dt^2 = -3420
2nd derivative is negative, hence it has maximum value
So, the time when it is maximum is 26.9 or 27 hours
Start with the parent function f(x) = x³
Notice the function f(x) = (x - 4)³ that a value '4' is subtracted from 'x' ⇒ This means the function f(x) is translated four units to the right.
Then the function f(x) = ¹/₂ (x - 4)³, the function (x - 4)³ is halved vertically ⇒ Half the y-coordinate
Then the function f(x) = ¹/₂ (x - 4)³ + 5 that a value '5' is added to ¹/₂ (x - 4)³ ⇒ This means the function f(x) is translated five units up
So the order of transformation that is happening to f(x) = x³ is translation four units to the right, half the y-coordinate, then translate 5 units up.