Answer:
The future value of this initial investment after the six year period is $2611.6552
Step-by-step explanation:
Consider the provided information.
A student desired to invest $1,540 into an investment at 9% compounded semiannually for 6 years.
Future value of an investment: 
Where Fv is the future value, p is the present value, r is the rate and n is the number of compounding periods.
9% compounded semiannually for 6 years.
Therefore, the value of r is: 
Number of periods are: 2 × 6 = 12
Now substitute the respective values in the above formula.




Hence, the future value of this initial investment after the six year period is $2611.6552
Answer: 5
Step-by-step explanation:
The degree is
. Setting this equal to 10, we get m = 5.
<span>This question is an annuity problem with cost of the car = $32,998, the present value of the annuity (PV) is given by the difference between the cost of the car and the down payment = $32,998 - $4,200 = $28,798. The monthly payments (P) = $525 and the number of number of years (n) = 5 years and the number of payments in a year (t) is 12 payments (i.e. monthly) The formula for the present value of an annuity is given by PV = (1 - (1 + r/t)^-nt) / (r/t) 28798 = 525(1 - (1 + r/12)^-(5 x 12)) / (r/12) 28798r / 12 = 525(1 - (1 + r/12)^-60) 28798r / (12 x 525) = 1 - (1 + r/12)^-60 2057r / 450 = 1 - (1 + r/12)^-60 Substituting option A (r = 37% = 0.37) 2057r / 450 = 2057(0.37) / 450 = 761.09 / 450 = 1.691 1 - (1 + r/12)^60 = 1 - (1 + 0.37/12)^-60 = 1 - 0.1617 = 0.8383 Therefore, r is not 37% Substituting option D (r = 3.7% = 0.037) 2057r / 450 = 2057(0.037) / 450 = 76.109 / 450 = 0.1691 1 - (1 + r/12)^60 = 1 - (1 + 0.037/12)^-60 = 1 - 0.8313 = 0.1687 Therefore, r is approximately 3.7%</span>