The correct answer is B. An electron orbital describes a three-dimensional space where an electron can be found 90% of the time.
Explanation:
Electrons are negatively charged particles found in atoms. These different from protons and neutrons are not located in the nucleus of the atom but orbit it. Additionally, electrons do not orbit the nucleus following a linear pattern but they have a wave-like behavior which means they move in a three-dimensional space or area known as electron orbital in which they can be found most of the time, this space of area is determined depending on energy, momentum, and other factors. Thus, an electron orbital is "a three-dimensional space where an electron can be found 90% of the time".
We have an internal skeleton and a grasshopper has an external skeleton.
Answer:
Please find the explanation below
Explanation:
Sodium (Na) and Chlorine (Cl) are two electrolytes that play important role in the absorption of water and nutrients in the small intestine. However, as mentioned in the question, the release of sodium and chlorine would lead to a loss of water in the intestines. This is because of the OSMOTIC phenomenon.
Osmosis is the movement of water molecules from a region of high concentration of water/low concentration of solute to a region of low concentration of water/high concentration of solute via a semipermeable membrane. In this case, the Na+ and Cl- ions serve as the solutes, which when released out of the intestine causes the solution in the intestines to be HYPOTONIC compared to the intestinal environment. This causes an OSMOTIC GRADIENT.
This osmotic gradient i.e. difference in concentration provokes osmotic flow of water from the intestines, which has a low solute/high water concentration, to the outside of the intestines, which has a high solute/low water concentration. Hence, water is lost from the intestine because the solute concentration becomes low when sodium and chlorine ions are released.
Answer:
the first and sencond options (1 and 2)
Explanation: