Answer:
For what amount of calling do the two cost the same?
answer:
plan A: 89 minute
plan B: 105 minutes
what is the cost when the two plans cost same?
answer:
36 costs when two plans cost the same
Step-by-step explanation:
hope it helps
#carryonlearning
mark me the brainliest plsss
Answer:
The probability that it will choose food #2 on the second trial after the initial trial = 0.3125
Step-by-step explanation:
Given - A lab animal may eat any one of three foods each day. Laboratory records show that if the animal chooses one food on one trial, it will choose the same food on the next trial with a probability of 50%, and it will choose the other foods on the next trial with equal probabilities of 25%.
To find - If the animal chooses food #1 on an initial trial, what is the probability that it will choose food #2 on the second trial after the initial trial?
Proof -
By the given information, we get the stohastic matrix
![H = \left[\begin{array}{ccc}0.5&0.25&0.25\\0.25&0.5&0.25\\0.25&0.25&0.5\end{array}\right]](https://tex.z-dn.net/?f=H%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%260.25%260.25%5C%5C0.25%260.5%260.25%5C%5C0.25%260.25%260.5%5Cend%7Barray%7D%5Cright%5D)
As we know that,
The matrix is a Markov chain 
Let
The initial state vector be
![x_{0} = \left[\begin{array}{ccc}1\\0\\0\end{array}\right]](https://tex.z-dn.net/?f=x_%7B0%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C0%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
we choose this initial vector because given that If the animal chooses food #1 on an initial trial.
Now,
![x_{1} = Hx_{0} \\ = \left[\begin{array}{ccc}0.5&0.25&0.25\\0.25&0.5&0.25\\0.25&0.25&0.5\end{array}\right]\left[\begin{array}{ccc}1\\0\\0\end{array}\right] \\= \left[\begin{array}{ccc}0.5\\0.25\\0.25\end{array}\right]](https://tex.z-dn.net/?f=x_%7B1%7D%20%3D%20Hx_%7B0%7D%20%5C%5C%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%260.25%260.25%5C%5C0.25%260.5%260.25%5C%5C0.25%260.25%260.5%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C0%5C%5C0%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%5C%5C0.25%5C%5C0.25%5Cend%7Barray%7D%5Cright%5D)
∴ we get
![x_{1} = \left[\begin{array}{ccc}0.5\\0.25\\0.25\end{array}\right]](https://tex.z-dn.net/?f=x_%7B1%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%5C%5C0.25%5C%5C0.25%5Cend%7Barray%7D%5Cright%5D)
Now,
![x_{2} = Hx_{1} \\ = \left[\begin{array}{ccc}0.5&0.25&0.25\\0.25&0.5&0.25\\0.25&0.25&0.5\end{array}\right]\left[\begin{array}{ccc}0.5\\0.25\\0.25\end{array}\right] \\= \left[\begin{array}{ccc}0.25+0.0625+0.0625\\0.125+0.125+0.0625\\0.125+0.0625+0.125\end{array}\right]\\= \left[\begin{array}{ccc}0.375\\0.3125\\0.3125\end{array}\right]](https://tex.z-dn.net/?f=x_%7B2%7D%20%3D%20Hx_%7B1%7D%20%5C%5C%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%260.25%260.25%5C%5C0.25%260.5%260.25%5C%5C0.25%260.25%260.5%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.5%5C%5C0.25%5C%5C0.25%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.25%2B0.0625%2B0.0625%5C%5C0.125%2B0.125%2B0.0625%5C%5C0.125%2B0.0625%2B0.125%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.375%5C%5C0.3125%5C%5C0.3125%5Cend%7Barray%7D%5Cright%5D)
∴ we get
![x_{2} = \left[\begin{array}{ccc}0.375\\0.3125\\0.3125\end{array}\right]](https://tex.z-dn.net/?f=x_%7B2%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0.375%5C%5C0.3125%5C%5C0.3125%5Cend%7Barray%7D%5Cright%5D)
∴ we get
The probability that it will choose food #2 on the second trial after the initial trial = 0.3125
Answer:
check the settings if you will see the link
The solution to x + 8.5 = 64.5 is 56.
x + 8.5 = 64.5
- 8.5 - 8.5
---------------------------
x = 56
7 miles to eat the wood girl don’t listen to this answer cuz it’s wrong I just need help on my questions sorry girly 8 miles in total