Answer:
b) One sample z-test for means
Step-by-step explanation:
Normal Distribution
we have μ₀ (population mean from previous studies)
sample size n = 100
standar deviation of population σ = 0.75
And it was determined from sample, that μ = 5 : so we want to know if, at some significance level that value (which is smaller than population mean ) could help in relation to decide about rejecting hypothesis H₀
We should use a z one tail-test for means (left tail)
About half way?
i have to do this for the 20 characters.
hi hi hi hi hi hi hi :)
hi hi hi hi hi hi hi :)
hi hi hi hi hi hi hi :)
hi hi hi hi hi hi hi :)
hi hi hi hi hi hi hi :)
hi hi hi hi hi hi hi :)
hi hi hi hi hi hi hi :)
Answer:
27
Step-by-step explanation:
45+27=72 and the overall angle is 72
Step-by-step explanation:
This is known as the triple tangent identity. Start with the fact that the three angles add up to 0.
(x − y) + (z − x) + (y − z) = 0
Subtract two terms to the other side and take the tangent:
x − y = -((z − x) + (y − z))
tan(x − y) = tan(-((z − x) + (y − z)))
Use reflection property:
tan(x − y) = -tan((z − x) + (y − z))
Now use angle sum identity:
tan(x − y) = -[tan(z − x) + tan(y − z)] / [1 − tan(z − x) tan(y − z)]
tan(x − y) = [tan(z − x) + tan(y − z)] / [tan(z − x) tan(y − z) − 1]
tan(x − y) [tan(z − x) tan(y − z) − 1] = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) − tan(x − y) = tan(z − x) + tan(y − z)
tan(x − y) tan(z − x) tan(y − z) = tan(x − y) + tan(z − x) + tan(y − z)