To find the x-intercept, substitute in 0 for y and solve for x. To find the y-intercept, substitute in 0 for x and solve for y.
x-intercept: (9/4,0)
y-intercept: (0,−9)
Divide both sides by 2 for the first one.
2c/2>2/2
c>1
simplify both sides for the second 1
1/6d>=1
6*(1/6d).=(6)*(1)
d>=6
For the last one
subtract 9 from both sides
r+9-9<=23-9 so that r<=14
Hope this helps!
Answer: The last
Step-by-step explanation: 2 of the x values are the same
Answer:
½ ln 3
Step-by-step explanation:
∫ sec²x / tan x dx
If u = tan x, then du = sec²x dx.
∫ du / u
ln|u| + C
ln|tan x| + C
Evaluate between π/4 and π/3.
ln|tan(π/3)| + C − (ln|tan(π/4)| + C)
ln|√3| + C − ln|1| − C
ln(√3)
½ ln 3