Answer:
It limits the spread of pathogens
Explanation:
Many diseases are contracted byu direct contact with an individual that is a carrier of a disease. The pathogens primarily spread by direct contact includes parasites, certain bacteria, certain viruses. For example, viruses include: Hepatitis A and Hepatitis E and are associated with poor sanitation and hygiene, leading to infection and inflammation of the liver.
Answer:
Plants and algae make their own food and are called producers. Level 2: Herbivores eat plants and are called primary consumers. Level 3: Carnivores that eat herbivores are called secondary consumers. Level 4: Carnivores that eat other carnivores are called tertiary consumers.
Explanation:
.....
Answer:
35%
Explanation:
If two genes are 30 map units apart, 30% of the produced gametes will be recombinant.
A mating between an individual homozygous dominant for both traits (AB/AB) and one homozygous recessive for both traits (ab/ab) is conducted.
The F1 will be heterozygous for both genes: AB/ab.
The F1 progeny is then test-crossed to a homozygous recessive individual:
<h3>AB/ab X ab/ab</h3>
<u>The possible offspring will be:</u>
- Parental (70%): AB/ab and ab/ab
- Recombinant (30%): Ab/ab and aB/ab
Since 30% of all the gametes produced by the F1 individual will be recombinant, 70% will be parental. As there are two types of parental gametes, each of them will have a frequency of 35%.
<u>The offspring that will have a dominant phenotype for both traits has the genotype AB/ab with a proportion of 35%.</u>
Natural Selection proposes that organisms that are better adapted to their environment are able to survive and reproduce.
Even though these frogs are the same species, their shades of green is what helps them to survive in their habitat. In this case, frogs with a lighter shade of green are able to be seen by predators easier, whereas frogs with darker shades are able to blend in (camouflage) more with their surroundings. After a period of time, due to them being easily seen, lighter-shaded green frogs will die off.
To anseer your question, natural selection would have a gradual affect on the frequency of the alleles. Lighter-green allele frequencies would eventually cut off, and darker-green allele frequencies will increase.
Hopefully the following image will help:
As seen in the image, (please forgive the quality, as I had drawn this on some random kids drawing site on the internet...) you can see the affects of natural selection on the allele frequencies. The brighter-green shades gradually decrease over time, as the darker shades increase.
Hope you find this helpful.