Units to measure pressure are as follows
atm - atmospheric pressure units
kPa - kilo Pascals
mm Hg - milimeters Hg
conversion units are;
1 atm = 101 325 Pa
therefore 4.30 atm = 101 325 Pa / atm x 4.30 atm = 435.7 Pa
1 atm = 760.0 mm Hg
4.30 atm = 760.0 mm Hg / atm x 4.30 atm = 3268 mm Hg
answers are 435.7 Pa and 3268 mm Hg
Answer : The partial pressure of
at equilibrium is, 1.0 × 10⁻⁶
Explanation :
The partial pressure of
= 
The partial pressure of
= 
The partial pressure of
= 

The balanced equilibrium reaction is,

Initial pressure 1.0×10⁻² 2.0×10⁻⁴ 2.0×10⁻⁴
At eqm. (1.0×10⁻²-2p) (2.0×10⁻⁴+p) (2.0×10⁻⁴+p)
The expression of equilibrium constant
for the reaction will be:

Now put all the values in this expression, we get :


The partial pressure of
at equilibrium = (2.0×10⁻⁴+(-1.99×10⁻⁴) )= 1.0 × 10⁻⁶
Therefore, the partial pressure of
at equilibrium is, 1.0 × 10⁻⁶
The atomic mass of Europium is 152 amu
Work:
151(0.4803) = 72.52 amu
153(0.5197) = 79.5 amu
72.5 + 79.5 = 152 amu
Volume of the tank is 5.5 litres.
Explanation:
mass of the CO2 is given 8.6 grams
Pressure of the gas is 89 Kilopascal which is 0.8762 atm
Temperature of the gas is 29 degrees ( 0 degrees +273.5= K) so (29+273)
R = gas constant 0.0821 liter atmosphere per kelvin)
FROM THE IDEAL GAS LAW
PV=nRT ( P Pressure, V Volume, n is number of moles of gas, R gas constant, Temperature in Kelvin)
no of moles = mass/atomic mass
= 8.6/44
= 0.195 moles
now putting the values in equation
V=nRT/P
= 0.195*0.0821*302/ 0.8762
= 5.5 litres.
As the carbon dioxide gas occupies the volume os the tank hence volume of tank is 5.5 litres.