<u>Answer:</u> The standard enthalpy change for the given reaction is 868.05 kJ
<u>Explanation:</u>
- <u>Calculating the enthalpy of propane:</u>
The chemical equation for the combustion of propane follows:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(3\times \Delta H^o_f_{(CO_2(g))})+(4\times \Delta H^o_f_{(H_2O(g))})]-[(1\times \Delta H^o_f_{(C_3H_8(g))})+(5\times \Delta H^o_f_{(O_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%283%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO_2%28g%29%29%7D%29%2B%284%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2O%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C_3H_8%28g%29%29%7D%29%2B%285%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28O_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![-2219.0=[(3\times (-393.5))+(4\times (-285.8))]-[(1\times \Delta H^o_f_{(C_3H_8(g))})+(5\times (0))]\\\\\Delta H^o_f_{(C_3H_8(g))}=-140.7kJ/mol](https://tex.z-dn.net/?f=-2219.0%3D%5B%283%5Ctimes%20%28-393.5%29%29%2B%284%5Ctimes%20%28-285.8%29%29%5D-%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C_3H_8%28g%29%29%7D%29%2B%285%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_f_%7B%28C_3H_8%28g%29%29%7D%3D-140.7kJ%2Fmol)
The enthalpy of formation of
is -140.7 kJ/mol
- <u>Calculating the enthalpy of propylene:</u>
The chemical equation for the combustion of propane follows:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(6\times \Delta H^o_f_{(CO_2(g))})+(6\times \Delta H^o_f_{(H_2O(g))})]-[(2\times \Delta H^o_f_{(C_3H_6(g))})+(9\times \Delta H^o_f_{(O_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%286%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO_2%28g%29%29%7D%29%2B%286%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2O%28g%29%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C_3H_6%28g%29%29%7D%29%2B%289%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28O_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![-2058.3=[(6\times (-393.5))+(6\times (-285.8))]-[(2\times \Delta H^o_f_{(C_3H_6(g))})+(9\times (0))]\\\\\Delta H^o_f_{(C_3H_6(g))}=-1008.75kJ/mol](https://tex.z-dn.net/?f=-2058.3%3D%5B%286%5Ctimes%20%28-393.5%29%29%2B%286%5Ctimes%20%28-285.8%29%29%5D-%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C_3H_6%28g%29%29%7D%29%2B%289%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_f_%7B%28C_3H_6%28g%29%29%7D%3D-1008.75kJ%2Fmol)
The enthalpy of formation of
is -1008.75 kJ/mol
- <u>Calculating the enthalpy change of the reaction:</u>
The given chemical equation follows:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(C_3H_8(g))})]-[(1\times \Delta H^o_f_{(C_3H_6(g))})+(1\times \Delta H^o_f_{(H_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C_3H_8%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C_3H_6%28g%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-140.7))]-[(1\times (-1008.75))+(1\times (0))]\\\\\Delta H^o_{rxn}=868.05kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-140.7%29%29%5D-%5B%281%5Ctimes%20%28-1008.75%29%29%2B%281%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_%7Brxn%7D%3D868.05kJ)
Hence, the standard enthalpy change for the given reaction is 868.05 kJ