Here is the answer to the question above. A <span>series of light brown lines drawn at intervals of 50 feet to designate their respective heights above sea level are called CONTOUR LINES. This are the lines which you can see on the maps. Hope this answers your question.</span>
Answer:
A
Step-by-step explanation:
g(x)=f(x)+6
This is a change in range.
The graph of g(x) is obtained by shifting the graph of f(x) 6 units upwards
Answer: 2-(2x+40) or (2x+40)-2
Step-by-step explanation: If you wanted to solve the problem, you have to do the stuff in the parentheses before you do the stuff out of the parentheses. In the parentheses, you will have to solve 2x before you do anything else. When you solve 2x, the answer to that, add it to 40. Then the answer in the parentheses, subtract it by 2 and you can get the answer.
Answer: 48°
<u>Step-by-step explanation:</u>
The shadow is the adjacent side and the length of the flag is the hypotenuse

Answer:
One of the obvious non-trivial solutions is
.
Step-by-step explanation:
Suppose the matrix A is as follows:
![A=\left[\begin{array}{ccc}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&3_{23}\\a_{31}&a_{32}&a_{33}\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da_%7B11%7D%26a_%7B12%7D%26a_%7B13%7D%5C%5Ca_%7B21%7D%26a_%7B22%7D%263_%7B23%7D%5C%5Ca_%7B31%7D%26a_%7B32%7D%26a_%7B33%7D%5Cend%7Barray%7D%5Cright%5D)
The observed system
after multiplying looks like this
![Ax=0 \iff \left[\begin{array}{ccc}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{array}\right] \cdot \left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right] =0 \iff \\ \\a_{11}x_1+a_{12}x_2+a_{13}x_3=0\\a_{21}x_1+a_{22}x_2+a_{23}x_3=0\\a_{31}x_1+a_{32}x_2+a_{33}x_3=0\\\\](https://tex.z-dn.net/?f=Ax%3D0%20%5Ciff%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da_%7B11%7D%26a_%7B12%7D%26a_%7B13%7D%5C%5Ca_%7B21%7D%26a_%7B22%7D%26a_%7B23%7D%5C%5Ca_%7B31%7D%26a_%7B32%7D%26a_%7B33%7D%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_1%5C%5Cx_2%5C%5Cx_3%5Cend%7Barray%7D%5Cright%5D%20%3D0%20%5Ciff%20%5C%5C%20%5C%5Ca_%7B11%7Dx_1%2Ba_%7B12%7Dx_2%2Ba_%7B13%7Dx_3%3D0%5C%5Ca_%7B21%7Dx_1%2Ba_%7B22%7Dx_2%2Ba_%7B23%7Dx_3%3D0%5C%5Ca_%7B31%7Dx_1%2Ba_%7B32%7Dx_2%2Ba_%7B33%7Dx_3%3D0%5C%5C%5C%5C)
Since we now that
, where
are the columns of the matrix A, we actually know this:
![-2\cdot \left[\begin{array}{ccc}a_{11}\\a_{21}\\a_{31}\end{array}\right] +3\cdot \left[\begin{array}{ccc}a_{12}\\a_{22}\\a_{32}\end{array}\right] -5\cdot \left[\begin{array}{ccc}a_{13}\\a_{23}\\a_{33}\end{array}\right] =\left[\begin{array}{ccc}0\\0\\0\end{array}\right]](https://tex.z-dn.net/?f=-2%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da_%7B11%7D%5C%5Ca_%7B21%7D%5C%5Ca_%7B31%7D%5Cend%7Barray%7D%5Cright%5D%20%2B3%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da_%7B12%7D%5C%5Ca_%7B22%7D%5C%5Ca_%7B32%7D%5Cend%7Barray%7D%5Cright%5D%20-5%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da_%7B13%7D%5C%5Ca_%7B23%7D%5C%5Ca_%7B33%7D%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%5C%5C0%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Once we multiply and sum up these 3 by 1 matrices, we get that these equations hold:

This actually means that the solution to the previously observed system of equations (or equivalently, our system
) has a non-trivial solution
.