Answer:
2x^2+4x-16
Step-by-step explanation:
The quadratic can be written as
f(x) = a(x-z1)(x-z2) where z1 and z2 are the roots
f(x) = a (x-2)(x- -4)
a is the leading coefficient
f(x) = 2(x-2)(x+4)
= 2(x^2 -2x+4x-8)
= 2(x^2 +2x-8)
= 2x^2 +4x-16
Answer: The answer is (B).
Step-by-step explanation: We are given four options and we are to select which matrix can be multiplied to the left of a vector matrix to get a new vector matrix. The order of a vector matrix is either n × 1 or 1 × n.
For (A): The order of the matrix is 2 × 1. If we multiply this matrix by a vector matrix of order 1 × 2, then the resulting matrix will be of order 2 × 2, which is not a vector matrix.
For (B): The order of the matrix is 3 × 2. If we multiply this matrix by a vector matrix of order 2 × 1, then the resulting matrix will be of order 3 × 1, which is a new vector matrix.
For (C): The order of the matrix is 2 × 2. If we multiply this matrix by a vector matrix of order 2 × 1, then the resulting matrix will be of order 2 × 1, which is a vector matrix of order same as before.
For (D): The order of the matrix is 1 × 2. If we multiply this matrix by a vector matrix of order 2 × 1, then the resulting matrix will be of order 1 × 1, which is a not vector matrix.
Thus, the correct option is (B).
Let's say the first truck weighs x tons
Then, the weight of 2nd truck = x+2 tons
The weight of 3rd truck = (x + 2) + 2 = x+4 tons
The weight of 4th truck = (x + 4) + 2 = x+6 tons
Total weight of 4 trucks:
x + (x+2) + (x+4) + (x+6) = 32
which can be solved easily to give x = 5
Answer:
7.96 ft
Step-by-step explanation:
Given;
Length of ramp L = 8 ft
Angle with the horizontal (ground) = 6°
Applying trigonometry;
With the length of ramp as the hypothenuse,
The horizontal distance d as the adjacent to angle 6°
Since we want to calculate the adjacent and we have the hypothenuse and the angle. We can apply cosine;
Cosθ = adjacent/hypothenuse
Substituting the values;
Cos6° = d/8
d = 8cos6°
d = 7.956175162946
d = 7.96 ft
The building is 7.96ft away from the entry point of the ramp.
Answer:
0.333333+
Step-by-step explanation: