Answer:
Number of hours= 13.61 hours
Step-by-step explanation:
Giving the following information:
Mr. Halloway knows that it is about 885 miles to their destination.
Average speed= 65 miles per hour
<u>To calculate the number of hours to be drive, we need to use the following formula:</u>
Number of hours= total miles / miles per hour
Number of hours= 885/65
Number of hours= 13.61 hours
The answer to the question is √3(−n+36)
Answer:
The inverse of the function is
.
Step-by-step explanation:
The function provided is:

Let
.
Then the value of <em>x</em> is:

For the inverse of the function,
.
⇒ 
Compute the value of
as follows:
![f[f^{-1}(x)]=f[\frac{x-5}{3}]](https://tex.z-dn.net/?f=f%5Bf%5E%7B-1%7D%28x%29%5D%3Df%5B%5Cfrac%7Bx-5%7D%7B3%7D%5D)
![=3[\frac{x-5}{3}]+5\\\\=x-5+5\\\\=x](https://tex.z-dn.net/?f=%3D3%5B%5Cfrac%7Bx-5%7D%7B3%7D%5D%2B5%5C%5C%5C%5C%3Dx-5%2B5%5C%5C%5C%5C%3Dx)
Hence proved that
.
Compute the value of
as follows:
![f^{-1}[f(x)]=f^{-1}[3x+5]](https://tex.z-dn.net/?f=f%5E%7B-1%7D%5Bf%28x%29%5D%3Df%5E%7B-1%7D%5B3x%2B5%5D)

Hence proved that
.
The Factorization of 121b⁴ − 49 is (11b^2 + 7)(11b^2 - 7).
The equation 121b⁴ − 49
To find the Factorization of 121b⁴ − 49.
<h3>
What is the factor of a^2-b^2?</h3>
The factor of a^2-b^2 is (a+b)(a-b)
We have write the given equation in the form of a^2-b^2

Therefore the factor of the 121b^4 − 49 is (11b^2 + 7)(11b^2 - 7).
To learn more about the factor visit:
brainly.com/question/25829061
Answer:
No
Step-by-step explanation:
Think of it like this. 6/10 is 60% and 5/20 is 25%. These two values aren't the same.