The rate constant is mathematically given as
K2=2.67sec^{-1}
<h3>What is the Arrhenius equation?</h3>
The rate constant for a particular reaction may be calculated with the use of the Arrhenius equation. This constant can be stated in terms of two distinct temperatures, T1 and T2, as follows:

Therefore
KT1= 0.0110^{-1}
T1= 21+273.15
T1= 294.15K
T2= 200
T2=200+273.15
T2= 473.15K
Ea= 35.5 Kj/Mol
Hence, in j/mol R Ea is
Ea=35.5*1000 j/mol R

K2/0.0110 =e^(5.492)
K2/0.0110 =242.74
K2= 242.74*0.0110
K2=2.67sec^{-1}
In conclusion, rate constant
K2=2.67sec^{-1}
Read more about rate constant
brainly.com/question/20305871
#SPJ1
Answer:
"Freezing point and ability to react with oxygen" are chemical properties
Explanation:
The change of liquid into solid is the freezing point. The melting point is more than the freezing point in certain cases of mixtures for certain organic compounds like fats. As soon as the mixture freezes it becomes solid and which results in change in the composition from the liquid and solid in this way the it drastically reduces the freezing point. The melting point gets higher due to the pressure. This happens due to the release of heat of which results in the rise of temperature to the freezing point
.Also the reaction of elements with oxygen which leads to formation of new substance is also an chemical property
Answer:
Choice d. No effect will be observed as long as other factors (temperature, in particular) are unchanged.
Explanation:
The equilibrium constant of a reaction does not depend on the pressure. For this particular reaction, the equilibrium quotient is:
.
Note that the two sides of this balanced equation contain an equal number of gaseous particles. Indeed, both
and
will increase if the pressure is increased through compression. However, because
and
have the same coefficients in the equation, their concentrations are raised to the same power in the equilibrium quotient
.
As a result, the increase in pressure will have no impact on the value of
. If the system was already at equilibrium, it will continue to be at an equilibrium even after the change to its pressure. Therefore, no overall effect on the equilibrium position should be visible.
The pressure of the gas is expected to increase in accordance to Boyle's law.
<h3>What is Boyle's law?</h3>
Boyle's law states that, the volume of a given mass of gas is inversely proportional to its pressure at constant temperature.
By implication, when the piston is lowered and the volume of the gas is decreased, the pressure of the gas is expected to increase in accordance to Boyle's law.
Learn more about Boyle's law: brainly.com/question/1437490