Answer:
diamonds are carbon based and have a giant covalent structure
Explanation:
This is what gives diamonds its strength and rigidity.
Diamonds are different from graphite due to the way the atoms are arranged
The name of that compound would be ammonium phosphate.
LiCO3-> LiO+ CO2
It is already balanced as there is one Li on each side, one C on each side and three Os on each side.
Answer:
a) +640 kJ/mol or +1.06x10⁻¹⁸ J
b) +276 kJ/mol
Explanation:
To dissociate the molecule, the bond must be broken, thus, it's necessary energy equal to the energy of the bond, which can be calculated by:
E = (Q1*Q2)/(4*π*ε*r)
Where Q is the charge of the ions, ε is a constant (8.854x10⁻¹²C²J ⁻¹ m⁻¹), and r is the bond length. Each one of the ions has a charge equal to 1. The elementary charge is 1.602x10⁻¹⁹C, which will be the charge of them.
1 mol has 6.022x10²³ molecules (Avogadros' number), so the energy of 1 mol is the energy of 1 molecule multiplied by it:
E = 6.022x10²³ *(1.602x10⁻¹⁹)²/(4π*8.854x10⁻¹²*2.17x10⁻¹⁰)
E = +640113 J/mol
E = +640 kJ/mol
Or at 1 molecule: E =640/6.022x10²³ = +1.06x10⁻²¹ kJ = +1.06x10⁻¹⁸ J
b) The energy variation to dissociate the molecule at its neutral atoms is the energy of dissociation less the difference of the ionization energy of K and the electron affinity of F (EA):
498 = 640 - (418 - EA)
640 -418 + EA = 498
222 + EA = 498
EA = +276 kJ/mol