Answer:
Volume = 16 unit^3
Step-by-step explanation:
Given:
- Solid lies between planes x = 0 and x = 4.
- The diagonals rum from curves y = sqrt(x) to y = -sqrt(x)
Find:
Determine the Volume bounded.
Solution:
- First we will find the projected area of the solid on the x = 0 plane.
A(x) = 0.5*(diagonal)^2
- Since the diagonal run from y = sqrt(x) to y = -sqrt(x). We have,
A(x) = 0.5*(sqrt(x) + sqrt(x) )^2
A(x) = 0.5*(4x) = 2x
- Using the Area we will integrate int the direction of x from 0 to 4 too get the volume of the solid:
V = integral(A(x)).dx
V = integral(2*x).dx
V = x^2
- Evaluate limits 0 < x < 4:
V= 16 - 0 = 16 unit^3
Answer:
correct choice is 1st option
Step-by-step explanation:
Two given triangles have two pairs of congruent sides: one pair of length 7 units and second pair of length 8 units. The third side is common, i.e the lengths of third sides are equal too.
Use SSS theorem that states that if three sides of one triangle are congruent to three sides of another triangle, then these two triangles are congruent.
Thus, given triangles are congruent by SSS theorem.
Answer:
20.667
Step-by-step explanation: