Answer:
z = 61
Step-by-step explanation:
The exterior angle is congruent (equal to) the sum of the 2 farthest angles from it, so you can set the equation like this:
z + z - 11 = z + 50
Add like terms, which would be the 2 "z's" on the left side:
2z - 11 = z + 50
Then subtract the z on the right side from both sides:
2z - 11 = z + 50
-z -z
___________
z - 11 = 50
Add 11 to both sides:
z - 11 = 50
+ 11 +11
________
z = 61
(6, 2 )
substitute x = 5 into the equation and solve for y
6y + 8 = 20 ( subtract 8 from both sides )
6y = 12 ( divide both sides by 6 )
y =
= 2
the ordered pair is (5, 2 )
Step-by-step explanation:
in isoscles triangles two angles and lengths are equal .
two sides equal 3.5
so both of the angles are 55°
the sum of the angles in a triangle is 180°, so
x = 180° - 55° - 55°
x = 70° (Ans)
Y = x + 5A linear equation (in slope-intercept form) for a line perpendicular to y = -x + 12 with a y-intercept of 5.y = 1/2x - 5Convert the equation 4x - 8y = 40 into slope-intercept form.y = -1/2x + 5A linear equation (in slope-intercept form) which is parallel to x + 2y = 12 and has a y-intercept of 5.3x - y = -5A linear equation (in standard form) which is parallel to the line containing (3, 5) and (7, 17) and has a y-intercept of 5.y = -3x + 1A linear equation (in slope-intercept form) which contains the points (10, 29) and (-2, -7).y = -5A linear equation which goes through (6, -5) and (-12, -5).x = -5A linear equation which is perpendicular to y = 12 and goes through (-5, 5).y = 5A linear equation which is parallel to y = 12 and goes through (-5, 5).y = -x + 5A linear equation (in slope-intercept form) which is perpendicular to y = x and goes through (3, 2).y = -5xA linear equation (in slope-intercept form) which goes through the origin and (1, -5).x = 2A linear equation which has undefined slope and goes through (2, 3).y = 3A linear equation which has a slope of 0 and goes through (2, 3).2x + y = -9A linear equation (in standard form) for a line with slope of -2 and goes through point (-1, -7).3x +2y = 1A linear equation (in standard form) for a line which is parallel to 3x + 2y = 10 and goes through (3, -4).y + 4 = 3/2 (x - 3)A linear equation (in point-slope form) for a line which is perpendicular to y = -2/3 x + 9 and goes through (3, -4).y - 8 = -0.2(x + 10)<span>The table represents a linear equation.
Which equation shows how (-10, 8) can be used to write the equation of this line in point-slope form?</span>
Answer:
B
Step-by-step explanation:
A proportional relationship is represented by linear function with its linear parameter "b" equal to zero. Since b is equal to zero, the line passes through the origin and the function/relation is proportional.
To verify that we divide the y coordinate over the x coordinate we obtain a constant called k, which is the slope.
For instance:

According to this function we can easily check a proportional relationship among its points:

