Answer: (x^2)/25 + (16y^2)/375) = 1
Step-by-step explanation:
since foci are symetrically located on x-axis about origin, the equation of the ellipse must be of the following form:
(x^2)/(a^2) + (y^2)/(b^2) = 1, where a = semi-major axis, and b = semi-minor axis,
and: e = eccentricity = sqrt(a^2 - b^2)/a = 0.25; foci located at (+/- sqrt(a^2 - b^2),0) = (+/- 1.25,0)
---> sqrt(a^2 - b^2) = 1.25 ---> 1.25/a = 0.25 ---> a = 1.25/0.25 ---> a = 5; and sqrt(a^2 - b^2) = 1.25 = 5/4
---> a^2 - b^2 = (5/4)^2 = 25/16; or 5^2 - b^2 = 25/16 ---> 25 - b^2 = 25/16;
---> b^2 = 25 - (25/16) = 25[1 - 1/16] = 25(15)/16 = 375/16
---> (x^2)/25 + (y^2)/(375/16) = 1 ---> (x^2)/25 + (16y^2)/375) = 1
Hope this help...and correct it's been awhile..Let me know
With an expression like this, you have to raise all the terms to the 3rd power. So the 5 will become

,

will become

, the 4 will become

and finally, the

becomes

. If you place all of these together in the same fraction, the new answer equivalent to the initial expression is
Answer:
i have the same question
Step-by-step explanation:
Answer: k = 55 degrees
Step-by-step explanation:
to find J, subtract 122 from 180, you get 58. The total number of degrees is 180. Since L is given as 67, and 67+58=125. Simply subtract 125 from 180 which is 55 degrees