The answer for that question is about 3 I think is this mathswatch
9514 1404 393
Answer:
8000π mm^3/s ≈ 25,133 mm^3/s
Step-by-step explanation:
The rate of change of volume is found by differentiating the volume formula with respect to time.
V = 4/3πr^3
V' = 4πr^2·r'
For the given numbers, this is ...
V' = 4π(20 mm)^2·(5 mm/s) = 8000π mm^3/s ≈ 25,133 mm^3/s
_____
<em>Additional comment</em>
By comparing the derivative to the area formula for a sphere, you see that the rate of change of volume is the product of the area and the rate of change of radius. This sort of relationship will be seen for a number of different shapes.
ummm well thats a good question
Step-by-step explanation: hold on let me think
g
I don't understand what you are trying to say
Answer is 10(2k+5)
-----------------------------------
Work Shown:
20k+50 = 10*2k + 10*5
20k+50 = 10(2k+5)
Note how we can distribute the 10 back in to check our work
10(2k+5) = 10(2k)+10(5) = 20k+50
so that confirms we have the right answer
Another thing to notice is that 10 is the largest factor that we can pull out of 20k and 50. The value 10 is the GCF (greatest common factor) of 20 and 50.